References
For extensive reviews of the Heck reaction see:
1a
Heck RF.
Acc. Chem. Res.
1979,
146
1b
De Meijere A.
Meyer FE.
Angew. Chem., Int. Ed. Engl.
1994,
28:
2379
1c
Cabri W.
Candiani I.
Acc. Chem. Res.
1995,
28:
2
1d
Guiry PJ.
Hennessy AJ.
Cahill JP.
Top. Catal.
1997,
4:
311
1e
Jeffrey T.
Advances in Metal-Organic Chemistry
Vol 5:
JAI Press Inc.;
Conneticut:
1996.
p.153
2
Ozawa F.
Kubo A.
Hayashi T.
Tetrahedron Lett.
1992,
33:
1485
3a
Hennessy AJ.
Malone YM.
Guiry PJ.
Tetrahedron Lett.
2000,
41:
2261
3b
Ozawa F.
Kubo A.
Matsumoto Y.
Hayashi T.
Organometallics
1993,
12:
4188
3c
Tschoerner M.
Pregosin PS.
Albinati A.
Organometallics
1999,
18:
670
3d
Tietze LF.
Thede K.
Sannicolò F.
Chem. Commun.
1999,
1811
3e
Cho SY.
Shibisaki M.
Tetrahedron Lett.
1998,
39:
1773
3f
Loiseleur O.
Hayashi M.
Schmees N.
Pfaltz A.
Synthesis
1997,
1338
3g
Ozawa F.
Kobatake Y.
Hayashi T.
Tetrahedron Lett.
1993,
34:
2505
3h
Ozawa F.
Hayashi T.
J. Organomet. Chem.
1992,
428:
267
4
Loiseleur O.
Meier O.
Pfaltz A.
Angew. Chem., Int. Ed. Engl.
1996,
35:
200
5
Gilbertson SR.
Fu Z.
Org. Lett.
2001,
3:
161
6
Gilbertson SR.
Xie D.
Fu Z.
J. Org. Chem.
2001,
66:
7420
7
Gilbertson SR.
Fu Z.
Xie D.
Tetrahedron Lett.
2001,
42:
365
8
Hashimoto Y.
Horie Y.
Hayashi M.
Saigo K.
Tetrahedron: Asymmetry
2000,
11:
2205
9
Tu T.
Deng W.-P.
Hou X.-L.
Dai L.-X.
Dong X.-C.
Chem.-Eur. J.
2003,
9:
3073
10
Kilroy TG.
Hennessy AJ.
Malone YM.
Farrell A.
Guiry PJ.
J. Mol. Catal. A: Chem.
2003,
196:
65
11a
Hennessy AJ.
Malone YM.
Farrell A.
Guiry PJ.
Tetrahedron Lett.
1999,
40:
9163
11b
Hennessy AJ.
Malone YM.
Farrell A.
Guiry PJ.
Tetrahedron Lett.
2000,
41:
2261
11c
Hennessy AJ.
Connolly DJ.
Malone YM.
Farrell A.
Guiry PJ.
Tetrahedron Lett.
2000,
41:
7757
12a
Kiely D.
Guiry PJ.
Tetrahedron Lett.
2002,
43:
9545
12b
Kiely D.
Guiry PJ.
Tetrahedron Lett.
2003,
44:
7377
13
Kündig PE.
Meier P.
Helv. Chim. Acta
1999,
82:
1360
14
Malkov AV.
Bella M.
Stara IG.
Kocovsky P.
Tetrahedron Lett.
2001,
42:
3045
15a
Tietze LF.
Thede K.
Sannicolò F.
Chem. Commun.
1999,
1811
15b
Tietze LF.
Thede K.
Synlett
2000,
1470
16
Tietze LF.
Lohmann JK.
Synlett
2002,
2083
17
Cozzi PG.
Menges F.
Kaiser S.
Synlett
2003,
833
18
Typical Experimental Procedure for the Preparation of 2-(2-Diphenylphosphino)-benzo[
b
]thiophene-3-yl-4
S
-phenyl-4,5-dihydrooxazole (11).
To a solution of the benzo[b]thiophene-oxazoline (1.0 g, 3.58 mmol) in Et2O (10 mL) at -78 °C a solution of 1.6 M BuLi in hexane (2.3 mL, 3.70 mmol) were added and the resulting suspension was agitated at -78 °C for 1 h and 30 min. Diphenylchlorophosphine (0.62 mL, 3.36 mmol) was added at -78 °C and the reaction mixture was warmed at r.t. and stirred for 30 min. The reaction was quenched by adding pentane (40 mL) and H2O (30 mL). The organic phase was separated and dried over Na2SO4 and purified by chromato-graphy (hexane:Et2O, 9:1). Yield 78%; [α]D -5.4 (c 0.92, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 3.96 (dd, 1 H, J = 8.3, 8.8 Hz), 4.56 (dd, 1 H, J = 8.3, 10.3 Hz), 5.34 (dd, 1 H, J = 8.8, 10.3 Hz), 7.04-7.09 (m, 2 H), 7.22-7.52 (m, 15 H), 7.58-7.72 (m, 1 H), 8.60-8.66 (m, 1 H). 13C NMR (75 MHz, CDCl3): δ = 70.1, 74.1, 121.7, 125.0, 125.1, 125.3, 126.9, 127.5, 127.8, 128.7, 128.8 (d, J = 7.7 Hz), 129.6 (d, J = 10.9 Hz), 133.9 (d, J = 21.3 Hz), 134.3 (d, J = 21.3 Hz), 137.0 (J = 20.6 Hz), 137.2 (d, J = 16.6 Hz), 139.8, 142.0, 142.6, 148.9 (d, J = 42.8 Hz), 161.3. 31P (124 MHz, CDCl3): δ = -12.4. MS (EI): m/z (%) = 463 (4) [M+], 358 (100), 296 (12) and 239 (18).
Typical Experimental Procedure for the Preparation of 4-
iso-
Propyl-2-(3-diphenylphosphino-thiophene-2-yl)-4,5-dihydrooxazole (12).
Thiophene-2-oxazoline (0.418 g, 2.14 mmol) was dissolved in Et2O (5 mL) and the resultant solution was cooled at -78 °C. A solution of 2.5 M n-BuLi in hexane (1.6 mL, 4 mmol) was added dropwise and the yellow solution was stirred at
-78 °C for 30 min. The reaction was warmed up at 0 °C and stirred at this temperature for 30 min. The yellow-green solution was finally cooled to -78 °C then ClPPh2 (0.74 mL, 4 mmol) was added. The reaction was allowed to warm to r.t. during 20 h and then quenched with H2O. The phases were separated and the aqueous phase was extracted with Et2O (2 × 5 mL) the the organic phases were combined, dried over Na2SO4 and evaporated under reduced pressure to give an oil then was purified by chromatography (cyclohexane: Et2O, 9:1) to give a clear oil that slowly turned into a waxy white solid, yield 34%; [α]D -99.0 (c 0.99, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 0.71 (d, 1 H, J = 6.6 Hz), 0.74 (d, 3 H, J = 6.6 Hz), 1.6 (m, 1 H), 3.92 (q, 1 H, J = 7.8 Hz), 4.02 (q, 1 H, J = 7.8 Hz), 4.22 (dt, 1 H, J = 7.8, 1.8 Hz), 6.38 (dd, 1 H, J = 5.2, 0.8 Hz), 7.40-7.30 (m, 11 H). 13C NMR (75 MHz, CDCl3): δ = 17.10, 17.78, 31.86, 71.61, 126.20, 127.41, 127.17 (d, J = 13 Hz), 126.60 (d, J = 6 Hz), 132.10, 132.11 (d, J = 23.4 Hz), 132.50 (d, J = 20.8 Hz), 136.15 (d, J = 10.3 Hz), 137 (d, J = 11.8 Hz), 140.00 (d, J = 27 Hz), 157.11 (d, J = 3.5 Hz). 31P NMR (124 MHz, CHCl3): δ = -13.15. MS (EI): m/z (%) = 379 (2) [M+], 364 (4), 336 (19), 308 (100), 288 (53), 234 (9) and 89 (18).
19a
Della Vecchia L.
Vlattas I.
J. Org. Chem.
1977,
42:
2649
19b
Ennis DS.
Gilchrist TL.
Tetrahedron
1990,
46:
2623
20
Frost CG.
Williams JMJ.
Tetrahedron Lett.
1993,
34:
2015
21
Typical Experimental Procedure for the Asymmetric Heck Reaction.
A solution of aryl or alkenyl trifluoromethanesulfonate (0.13 mmol) and n-tridecane (10.0 mg, 0.054 mmol) in benzene (0.5 mL) was added to a schlenk containing Pd2(dba)3 (2.3 mg, 0.004 mmol) and ligand (0.008 mmol) under nitrogen. To this was then added the 2,3-dihydrofuran (0.65 mmol) and base (0.39 mmol). The resulting solution was then degassed by three freeze-thaw cycles at 0.01 mbar and then left to stir under nitrogen at 80 °C for 7 d giving a red solution with precipitation of Base·HOTf. Pentane (10 mL) was then added to the reaction mixture and the resulting suspension was filtered through 2 cm of silica with further elution using Et2O (10 mL). This solution was then concentrated and the yield calculated using GC (Se-30, 11 psi, 50 °C, 4 min, 15 °C/min, 170 °C, 10 min) by the internal standard method.
22 Kilroy, T. G.; End, N.; Cozzi, P. G.; Guiry, P. J. unpublished results.