Subscribe to RSS
DOI: 10.1055/s-2003-43377
Reaction of PhSeCl or PhSCl with 2,3-Allenoic Acids: An Efficient Synthesis of β-Organoselenium or β-Organosulfur Substituted Butenolides
Publication History
Publication Date:
04 December 2003 (online)
Abstract
β-Organoselenium or β-organosulfur-substituted butenolides were prepared via the electrophilic cyclization of 2,3-allenoic acids with PhSeCl or PhSCl.
Key words
allenes - carboxylic acids - electrophilic cyclizations - selenium - sulfur - lactones
-
1a
Nicolaou KC.Petasis NA. Selenium in Natural Products Synthesis Philadelphia; CIS: 1984. -
1b
Paulmier C. Selenium Reagents and Intermediates in Organic Synthesis Pergamon Press; Oxford: 1986. -
1c
Liotta D. Organoselenium Chemistry New York; Wiley: 1987. -
1d
Back TG. Organoselenium Chemistry: A Practical Approach Oxford University Press; Oxford: 1999. - For some of the most recent examples, see:
-
2a
Miranda N.Daublain P.Horner JH.Newcomb M. J. Am. Chem. Soc. 2003, 125: 5260 -
2b
Tiecco M.Testaferri L.Santi C.Tomassini C.Marini F.Bagnoli L.Temperini A. Angew. Chem. Int. Ed. 2003, 42: 3131 -
2c
Aprile C.Gruttadauria M.Amato ME.D’Anna F.Meo PL.Riela S.Noto R. Tetrahedron 2003, 59: 2241 -
2d
Fujiwara S.Shikano Y.Shin-ike T.Kambe N.Sonoda N. J. Org. Chem. 2002, 67: 6275 -
2e
Besev M.Engman L. Org. Lett. 2003, 4: 3023 -
2f
Silveira CC.Braga AL.Guerra RB. Tetrahedron Lett. 2002, 43: 3395 -
3a
Larock RC.Riefling B.Fellows CA. J. Org. Chem. 1978, 43: 131 ; and the references cited therein -
3b
Brima TS. inventors; U.S. Pat., US 4968817. ; Chem. Abstr. 1991, 114, 185246y -
3c
Tanabe A. inventors; Jpn. Kokai Tokyo Koho, JP 63211276, 88211276. ; Chem. Abstr. 1989, 110, 94978q -
3d
Lee GCM. inventors; Eur. Pat. Appl., EP 372940. ; Chem. Abstr. 1990, 113, 191137j -
3e
Ducharme Y,Gauthier JY,Prasit P,Leblanc Y,Wang Z,Leger S, andTherien M. inventors; PCT Int. Appl., WO 9500501. ; Chem. Abstr. 1996, 124, 55954y -
3f
Lee Gary CM, andGarst ME. inventors; PCT Int. Appl., WO 9116055. ; Chem. Abstr. 1992, 116, 59197m - For some of the most recent examples, see:
-
4a
Chia Y.Chang F.Wu Y. Tetrahedron Lett. 1999, 40: 7513 -
4b
Takahashi S.Maeda K.Hirota S.Nakata T. Org. Lett. 1999, 1: 2025 -
4c
Siddiqui BS.Afshan F.Ghiasuddin Faizi S.Naqvi SN.-H.Tariq RM. J. Chem. Soc., Perkin Trans. 1 1999, 2367 -
4d
Cortez DAG.Fernandes JB.Vieria PC.Silva MFGF.Ferreira AG.Cass QB.Pirani JR. Phytochemistry 1998, 49: 2493 -
4e
Otsuka H.Kotani K.Bando M.Kido M.Takeda Y. Chem. Pharm. Bull. 1998, 46: 1180 -
4f
Guo S.Wang L.Chen D. Indian J. Chem., Sect. B 1997, 36: 339 -
4g
Evidente A.Sparapano L. J. Nat. Prod. 1994, 57: 1720 -
4h
Damtoft S.Jensen SR. Phytochemistry 1995, 40: 157 -
4i
Estevez-Reyes R.Estevez-Braun A.Gonzalez AG. J. Nat. Prod. 1993, 56: 1177 -
4j
Claydon N.Hanson JR.Truneh A.Avent AG. Phytochemistry 1991, 30: 3802 -
4k
Seki T.Satake M.Mackenzie L.Kaspar HF.Yasumoto T. Tetrahedron Lett. 1995, 36: 7093 -
4l
Cambie RC.Bergquist PR.Karuso P. J. Nat. Prod. 1988, 51: 1014 -
4m
Ahmed M.Ahmed AA. Phytochemistry 1990, 29: 2715 -
4n
De Guzman FS.Schmitz FJ. J. Nat. Prod. 1990, 53: 926 -
5a
Deshong P.Sidler DR.Slough GA. Tetrahedron Lett. 1987, 28: 2233 -
5b
Canonne P.Akssira M.Lemay G. Tetrahedron Lett. 1983, 24: 1929 -
5c
Schmit C.Sahraoui-Taleb S.Differding E.Lombaert CGD.Ghosez L. Tetrahedron Lett. 1984, 25: 5043 -
5d
Cottier L.Descotes G.Nigay H.Parron J.Gregoire V. Bull. Soc. Chim. Fr. 1986, 844 -
5e
Marshall JA.Wolf MA. J. Org. Chem. 1996, 61: 3238 -
5f
Yu W.Alper H. J. Org. Chem. 1997, 62: 5684 -
5g
Xiao W.Alper H. J. Org. Chem. 1997, 62: 3422 -
5h
Cowell A.Stille JK. Tetrahedron Lett. 1979, 133 -
5i
Arcadi A.Bernocchi E.Burini A.Cacchi S.Marinelli F.Pietroni B. Tetrahedron 1988, 44: 481 -
5j
Marshall JA.Bartley GS.Wallace EM. J. Org. Chem. 1996, 61: 5729 -
5k
Clough JM.Pattenden G.Wight PG. Tetrahedron Lett. 1989, 30: 7469 -
5l
Gill GB.Idris MSH. Tetrahedron Lett. 1985, 26: 4811 -
5m
Kejian C.Sanner MA.Carlson RM. Synth. Commun. 1990, 20: 901 -
5n
Marshall JA.Wallace EM.Coan PS. J. Org. Chem. 1995, 60: 796 -
5o
Yoneda E.Kaneko T.Zhang S.Onitsuka K.Takahashi S. Org. Lett. 2000, 2: 441 -
6a
Ma S.Yu Z. Angew. Chem. Int. Ed. 2002, 41: 1775 -
6b
Ma S.Shi Z. J. Org. Chem. 1998, 63: 6387 -
6c
Ma S.Duan D.Shi Z. Org. Lett. 2000, 2: 1419 -
6d
Ma S.Shi Z.Wu S. Tetrahedron: Asymmetry 2001, 12: 193 -
6e
Ma S.Duan D.Wang Y. J. Comb. Chem. 2002, 4: 239 -
6f
Ma S.Shi Z. Chem. Commun. 2002, 540 -
7a
Ma S.Yu Z.Wu S. Tetrahedron 2001, 57: 1585 -
7b For Ag+-catalyzed cycloisomerization of 2,3-allenoic acids, see:
Marshall JA.Wolf MA.Wallace EM. J. Org. Chem. 1997, 62: 367 -
7c For H+-catalyzed cycloisomerization of 2,3-allenoic acids, see:
Kresze G.Kloimstein L.Runge W. Liebigs Ann. Chem. 1976, 979 -
7d Also see:
Musierowicz S.Wroblewski AE. Tetrahedron 1978, 34: 461 - 8
Ma S.Wu S. J. Org. Chem. 1999, 64: 9314 - 9
Ma S.Wu S. Chem. Commun. 2001, 441 - 10
Ma S.Shi Z.Yu Z. Tetrahedron Lett. 1999, 40: 2393 - 11
Ma S.Shi Z.Yu Z. Tetrahedron 1999, 55: 12137 - 12
Ma S.Shi Z. Chin. J. Chem. 2001, 19: 1280 - 13 Gill et al. reported the cyclization of 2,3-heptadienoic acid with 1.1 equiv of phenylselenenyl chloride or phenylsulfenyl chloride in CH2Cl2 at -78 °C affording the corresponding product in 34% and 12%, respectively. See:
Gill GB.Idris MSH. Tetrahedron Lett. 1985, 26: 4811 - 14 2,3-Allenoic acids were prepared according to the known procedures:
Clinet J.-C.Linstrumelle G. Synthesis 1981, 875 ; see also ref. -
15a
Garratt DG.Beaulieu PL.Morisset VM.Ujjainwalla M. Can. J. Chem. 1981, 58: 2745 -
15b
Garratt DG.Beaulieu PL.Ryan MD. Tetrahedron 1980, 36: 1507 -
15c
Halazy S.Hevesi L. Tetrahedron Lett. 1983, 24: 2689 - 17
Takahashi Y.Hagiwara H.Uda H.Kosugi H. Heterocycles 1981, 15: 225 -
18a
Ogawa A.Kuniyasu H.Sonoda N.Hirao T. J. Org. Chem. 1997, 62: 8361 -
18b
Xiao WJ.Alper H. J. Org. Chem. 1997, 62: 3422
References
Typical Procedure for the Synthesis of 5-butyl-4-phenylselanyl-5 H -furan-2-one (2a): To a solution of 1a (41 mg, 0.3 mmol) in MeCN (1.5 mL) in a dry Schlenk tube was added PhSeCl (86 mg, 0.45 mmol) in MeCN (1.5 mL) at 0 °C under N2 atmosphere. After the reaction was complete as monitored by TLC (eluent: petroleum ether-EtOAc, 8:1), the reaction mixture was evaporated and purified by flash chromatography on silica gel to give 2a (79 mg, 91%) as a liquid. IR(neat): 1748, 1571 cm-1. 1H NMR (CDCl3, 300 MHz): δ = 7.68-7.60 (m, 2 H), 7.50-7.34 (m, 3 H), 5.46 (d, J = 1.5 Hz, 1 H), 5.04 (ddd, J 1 = 1.5 Hz, J 2 = 3.5 Hz, J 3 = 7.7 Hz, 1 H), 1.98-1.85 (m, 1 H), 1.73-1.54 (m, 1 H), 1.53-1.23 (m, 4 H), 0.90 (t, J = 7.4 Hz, 3 H). 13C NMR (CDCl3, 75.4 MHz): δ = 171.1, 169.7, 135.9, 130.2, 130.1, 124.5, 115.9, 84.2, 33.7, 26.00, 22.3, 13.8. MS (70 eV): m/z (%) = 296 (73.33) [M + (80Se)], 239(100). Anal. Calcd for C14H16O2Se: C, 56.97; H, 5.46. Found: C, 57.21; H, 5.70. All other new products were characterized similarly.