Abstract
Purpose: With the aim of assessing the effectiveness of radiation-protection devices in invasive
cardiology, the goal of this study was to validate relative parameters for operator
occupational exposure, standardized to the patient's primary dose. Material and Methods: One of these parameters was the local dose, measured in air at the operator's position
per dose area product (DAP), applied to a male anthropomorphic Alderson-Rando phantom
for simulation of coronary angiography. The second parameter was personal occupational
dose to the operator per DAP, measured by thermoluminescence dosimeter stripes during
121 procedures in routine clinical work. Results: The local and personal doses per unit DAP - using typical 0.5-mm lead overcouch and
undercouch protection - were comparable (left eye 180 vs. 360, thyroid 260 vs. 260,
left shoulder 280 vs. 150, chest 400 vs. 500, hands 400 vs. 550, waist 900 vs. 400
nSv/Gy × cm2 ). The results, however, were far lower than typically reported values. Our findings
therefore disclose a typically inadequate use or acceptance by individual operators
of available table-attached lead protection devices, and of ceiling-attached lead-glass
screens. The additional use of individual 1.0-mm lead-equivalent garments reduced
local doses to levels between 1 ... 10 %. Conclusions: DAP-standardized dose parameters - determined experimentally (phantom measurements),
or in routine clinical work - are not appreciably influenced by the equipment age
and type, or by the image-intensifier entrance dose rate of the respective catheterization
system. They are consequently best suited for obtaining eloquent comparisons of various
radiation-protection devices, and for reliable estimation of local scatter radiation
exposure by simple documentation of intervention DAP.
Zusammenfassung
Ziel: Bestimmung der Wirksamkeit von Strahlenschutzmitteln mittels Orts- bzw. Körperdosismessungen
bei invasiv tätigen Kardiologen. Material und Methoden: Experimentell wurde an einem Alderson-Phantom eine Koronarangiographie simuliert
und die Ortsdosis am Aufenthaltsort des kardiologischen Untersuchers in Abhängigkeit
des applizierten Dosis-Flächen-Produktes (DFP) gemessen. Verglichen wurden diese Ergebnisse
mit kumulativen Untersucher-Körperdosen, normiert auf das kumulative DFP im Verlauf
von 121 koronaren Prozeduren. Ergebnisse: Unter Verwendung einer 0,5-mm bleiäquivalenten Über- und Untertischstreustrahlenabschirmung
entsprach der experimentelle Quotient weitgehend den entsprechenden klinischen Messwerten:
linkes Auge 180 vs. 360, Schilddrüse 260 vs. 260, linke Schulter 280 vs. 150, Brusthöhe
400 vs. 500, Hände 400 vs. 550, Bauchhöhe 900 vs. 400 nSv/Gy × cm2 . Beide Quotienten lagen weit unterhalb publizierter Werte: Dies weist auf einen weithin
inadäquaten Gebrauch fest installierter Strahlenschutzvorrichtungen in der invasiven
Kardiologie hin. Die korrekte Anwendung zusätzlicher Schutzbekleidung von 1,0-mm Blei-Äquivalenz
reduzierte die Untersucher-Körperdosis auf 1 … 10 %. Schlussfolgerungen: Da die DFP-normierten Körperdosiswerte des Untersuchers kaum von Alter, Typ oder
Bildverstärkereingangsdosisleistung einer Herzkatheteranlage beeinflusst werden, ermöglichen
sie eine verlässliche Bewertung von Strahlenschutzvorrichtungen und im Falle vergleichbarer
Untersuchungsbedingungen eine Abschätzung der Untersucher-Körperdosis aus dem applizierten
DFP.
Key words
Radiation exposure - interventional radiology - radiation-protection devices - dose
area product
Literatur
1 Recommendations of the International Commission on Radiological Protection. Oxford;
ICRP Publication 60. Pergamon Press 1991
2
Kuon E, Schmitt M, Dahm J B.
Significant reduction of radiation exposure to operator and staff during cardiac interventions
by analysis of radiation leakage and improved lead shielding.
Am J Cardiol.
2002;
89
44-49
3
Marx M V, Niklason L, Mauger E A.
Occupational radiation exposure to interventional radiologists: a prospective study.
J Vasc Interv Radiol.
1992;
3
597-606
4
Watson R M.
Radiation exposure: clueless in the cath lab, or sayonara ALARA.
Cathet Cardiovasc Diagn.
1997;
42
126-127
5
Padovani R, Rodella C A.
Staff dosimetry in interventional cardiology.
Radiat Prot Dosimetry.
2001;
94
99-103
6
Kuon E, Niederst P N, Dahm J B.
Usefulness of rotational spin for coronary angiography in patients with advanced renal
insufficiency.
Am J Cardiol.
2002;
90
369-373
7
Kuon E, Birkel J, Schmitt M, Dahm J B.
Radiation exposure benefit of a lead cap in invasive cardiology.
Heart.
2003;
89
1205-1210
8
Watson L E, Riggs M W, Bourland P D.
Radiation exposure during cardiology fellowship training.
Health Phys.
1997;
73
690-693
9
Kuon E, Dahm J B.
Effective training in radiation attenuating techniques requires long-term cardiology
fellowship supervision.
Eur J Allied Health.
2002;
3
20-25
10
Kuon E, Dorn C, Schmitt M, Dahm J B.
Radiation dose reduction in invasive cardiology by restriction to adequate instead
of optimized picture quality.
Health Phys.
2003;
84
626-631
11
Marshall N W, Faulkner K.
The dependence of the scattered radiation dose to personnel on technique factors in
diagnostic radiology.
Br J Radiol.
1992;
65
44-49
12
Williams J R.
Scatter dose estimation based on dose-area product and the specification of radiation
barriers.
Br J Radiol.
1996;
69
1032-1037
13
Finci L, Meier B, Steffenino G, Roy P, Rutishauser W.
Radiation exposure during diagnostic catheterization and single and double vessel
transluminal coronary angioplasty.
Am J Cardiol.
1987;
60
1401-1403
14
Vano E, Gonzalez L, Guibelalde E, Fernandez J M, Ten J I.
Radiation exposure to medical staff in interventional and cardiac radiology.
Br J Radiol.
1998;
71
954-960
15
Vano E, Gonzalez L, Fernandez J M, Guibelalde E.
Patient dose values in interventional radiology.
Br J Radiol.
1995;
68
1215-1220
16
Janssen R J, Hadders R H, Henkelman M S, Bos A JJ.
Exposure to operating staff during cardiac catheterization measured by thermoluminescence
dosimetry.
Radiat Prot Dosimetry.
1992;
43
175-177
17
McKetty M H.
Study of radiation doses to personnel in a cardiac catheterization laboratory.
Health Phys.
1996;
70
563-567
18
Cusma J T, Bell M R, Wondrow M A, Taubel J P, Holmes D R.
Real-time measurement of radiation exposure to patients during diagnostic coronary
angiography and percutaneous interventional procedures.
J Am Coll Cardiol.
1999;
33
427-435
19
Clark A L, Brennan A G, Robertson L J, McArthur J D.
Factors affecting patient radiation exposure during routine coronary angiography in
a tertiary referral centre.
Br J Radiol.
2000;
73
184-189
20
Fransson S G, Persliden J.
Patient radiation exposure during coronary angiography and intervention.
Acta Radiol.
2000;
41
142-144
21
Putte S Van de, Verhaegen F, Taeymans Y, Thierens H.
Correlation of patient skin doses in cardiac interventional radiology with dose-area
product.
Br J Radiol.
2000;
73
504-513
22
Boer A den, Feijter P J de, Serruys P W, Roelandt J R.
Real-time quantification and display of skin radiation during coronary angiography
and intervention.
Circulation.
2001;
104
1779-1784
23
Lobotessi H, Karoussou A, Neofotistou V, Louisi A, Tsapaki V.
Effective dose to a patient undergoing coronary angiography.
Radiat Prot Dosimetry.
2001;
94
173-176
24
Bernardi G, Padovani R, Morocutti G, Vano E, Malisan M R, Rinuncini M, Spedicato L,
Fioretti P M.
Clinical and technical determinants of the complexity of percutaneous transluminal
coronary angioplasty procedures: analysis in relation to radiation exposure parameters.
Cathet Cardiovasc Interv.
2000;
51
1-9
25 CEC Council Directive 97/43/Euratom of 30 June 1997. Article 4: On health protection
of individuals against the dangers of ionizing radiation in relation to medical exposure. Euratom
Amtsblatt 1997 L180: 22-27
26
Kuon E, Dahm J B.
Variablen der Patienten-Strahlenexposition invasiver Verfahren: Diagnostik, PTCA,
Laserangioplastie und Rotablation. Analyse 1929 koronarer Interventionen an 1500 Patienten.
Z Kardiol.
1999;
88
(Suppl 2)
22
27 Hart D, Jones D G, Wall B F.
Estimation of effective dose in diagnostic radiology from entrance surface dose and
dose-area product measurements. NRPB-R 262. National Radiological Protection Board . Oxon Ox 11; Chilton Didcot 0RQ 1994: 36
28
Golder W, Weiner G.
Bodily structure and radiation exposures in static X-ray procedures: A contribution
to determine national reference data.
Fortschr Röntgenstr.
2001;
173
563-568
29
Saebel M, Aichinger U, Schulz-Wendtland R.
Radiation exposure in X-ray mammography - A review.
Fortschr Röntgenstr.
2001;
173
79-91
30
Golder W, Weiner G.
Bodily structures and radiation exposures in dynamic X-ray procedures: A contribution
to determine national reference data.
Fortschr Röntgenstr.
2001;
173
756-762
31
Cohnen M, Poll L, Puttmann C, Ewen K, Modder U.
Radiation exposure in multi-slice CT of the heart.
Fortschr Röntgenstr.
2001;
173
295-299
32
Poll L W, Cohnen M, Brachten S, Ewen K, Modder U.
Dose reduction in multi-slice CT of the heart by use of ECG controlled tube current
modulation (“ECG pulsing”): phantom measurements.
Fortschr Röntgenstr.
2002;
174
1500-1505
33
Herzog C, Ay M, Engelmann K, Abolmaali N, Dogani S, Diebold T, Vogl T J.
Visualization techniques for multislice CT datasets of coronary arteries: correlation
of axial, multiplanar, three-dimensional, and virtual endoscopic imaging with coronary
angiography.
Fortschr Röntgenstr.
2001;
173
341-349
34
Balter S, Sones F M, Brancato R.
Radiation exposure to the operator performing cardiac angiography with U-arm systems.
Circulation.
1978;
58
925-932
35
Begg F R, Hans L F.
Radiation exposure to angiographer during coronary arteriography using u-arm amplifier.
Cathet Cardiovasc Diagn.
1975;
1
261-265
36
Valentin J.
Avoidance of radiation injuries from medical interventional procedures.
Ann ICRP.
2000;
30
7-67
Dr. med. E. Kuon
Klinik Fraenkische Schweiz
Feuersteinstraße 2
91320 Ebermannstadt
Phone: 09194/55386
Fax: 09194/55387
Email: Eberhard.Kuon@klinik-fraenkische-schweiz.de