Horm Metab Res 2003; 35(10): 565-569
DOI: 10.1055/s-2003-43500
Original Basic
© Georg Thieme Verlag Stuttgart · New York

Increased Activity of Glycerol 3-phosphate Dehydrogenase and Other Lipogenic Enzymes in Human Bladder Cancer

J.  Turyn1 , B.  Schlichtholz1 , A.  Dettlaff-Pokora1 , M.  Presler1 , E.  Goyke1 , M.  Matuszewski2 , Z.  Kmieć3 , K.  Krajka2 , J.  Swierczynski1
  • 1Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
  • 2Department of Urology, Medical University of Gdansk, Gdansk, Poland
  • 3Department of Histology and Immunology, Medical University of Gdansk, Gdansk, Poland
Further Information

Publication History

Received 3 February 2003

Accepted after second revision 14 July 2003

Publication Date:
07 November 2003 (online)

Abstract

Common molecular changes in cancer cells are high carbon flux through the glycolytic pathway and overexpression of fatty acid synthase, a key lipogenic enzyme. Since glycerol 3-phosphate dehydrogenase creates a link between carbohydrates and the lipid metabolism, we have investigated the activity of glycerol 3-phosphate dehydrogenase and various lipogenic enzymes in human bladder cancer.

The data presented in this paper indicate that glycerol 3-phosphate dehydrogenase activity in human bladder cancer is significantly higher compared to adjacent non-neoplastic tissue, serving as normal control bladder tissue. Increased glycerol 3-phosphate dehydrogenase activity is accompanied by increased enzyme activity, either directly (fatty acid synthase) or indirectly (through ATP-citrate lyase, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and citrate synthase) involved in fatty acid synthesis. Coordinated upregulation of glycerol 3-phosphate dehydrogenase and lipogenic enzymes activities in human bladder cancer suggests that glycerol 3-phosphate dehydrogenase supplies glycerol 3-phosphate for lipid biosynthesis.

References

  • 1 Zelewski M, Swierczynski J. Comparative studies on lipogenic enzyme activities in liver of human and some animal species.  Comp Bioch Physiol. 1990;  95 469-472
  • 2 Kusakabe T, Maeda M, Hoshi N, Sugino T, Watanabe K, Fukuda T, Suzuki T. Fatty Acid synthase is expressed mainly in adult hormone-sensitive cells or cells with high lipid metabolism and proliferating fetal cells.  J Histochem Cytochem. 2000;  48 613-622
  • 3 Swierczynski J, Goyke E, Wach L, Pankiewicz A, Kochan Z, Adamonis W, Sledzinski Z, Aleksandrowicz Z. Comparative study of the lipogenic potential of human and rat adipose tissue.  Metabolism. 2000;  49 594-599
  • 4 Diraison F, Dusserre E, Vidal H, Sothier M, Beylot M. Increased hepatic lipogenesis but decreased expression of lipogenic gene in adipose tissue in human obesity.  Am J Physiol Endocrinol Metab. 2002;  282 E46-E51
  • 5 Swinnen J V, Vanderhoydonc F, Elgamal A A, Eelen M, Vercaeren I, Joniau S, Van Poppel H, Baert L, Goossens K, Heyns W, Verhoeven G. Selective activation of the fatty acid synthesis pathway in human prostate cancer.  Int J Cancer. 2000;  88 176-179
  • 6 Alo P L, Visca P, Marci A, Mangoni A, Botti C, Di Tondo U. Expression of fatty acid synthase (FAS) as a predictor of recurrence in stage I breast carcinoma patients.  Cancer. 1996;  77 474-482
  • 7 Alo P L, Visca P, Framarino M L, Botti C, Monaco S, Sebastiani V, Serpieri D E, Di Tondo U. Immunohistochemical study of fatty acid synthase in ovarian neoplasm.  Oncol Rep. 2000;  7 1383-1388
  • 8 Rashid A, Pizer E S, Moga M, Milgraum L Z, Zahurak M, Pasternack G R, Kuhajda F P, Hamilton S R. Elevated expression of fatty acid synthase and fatty acid synthetic activity in colorectal neoplasia.  Am J Pathol. 1997;  150 201-208
  • 9 Pizer E S, Lax S F, Kuhajda F P, Pasternack G R, Kurman R J. Fatty acid synthase expression in endometrial carcinoma: correlation with cell proliferation and hormone receptors.  Cancer. 1998;  83 528-537
  • 10 Piyathilake C J, Frost A R, Manne U, Bell W C, Weiss H, Heimburger D C, Grizzle W E. The expression of fatty acid synthase (FASE) is an early event in the development and progression of squamous cell carcinoma of the lung.  Hum Pathol. 2000;  31 1068-1073
  • 11 Krontiras H, Roye G D, Beenken S E, Myers R B, Mayo M S, Peters G E, Grizzle W E. Fatty acid synthase expression is increased in neoplastic lesions of the oral tongue.  Head and Neck. 1999;  21 325-329
  • 12 Kuhajda F P, Piantadosi S, Pasternack G R. Haptoglobin-related protein (Hrp) epitopes in breast cancer as a predictor of recurrence of the disease.  N Engl J Med. 1989;  321 636-641
  • 13 Kuhajda F P, Jenner K, Wood F D, Hennigar R A, Jacobs L B, Dick J D, Pasternack G R. Fatty acid synthesis: a potential selective target for antineoplastic therapy.  Proc Natl Acad Sci USA. 1994;  91 6379-6383
  • 14 Jackowski S, Wang J, Baburina I. Activity of the phosphatidylcholine biosynthetic pathway modulates the distribution of fatty acids into glycerolipids in proliferating cells.  Biochim Biophys Acta. 2000;  1483 301-315
  • 15 Jackowski S. Cell cycle regulation of membrane phospholipid metabolism.  J Biol Chem. 1996;  271 20 219-20 222
  • 16 Zolnierowicz S, Swierczynski J, Zelewski L. Isolation and properties of glycerol 3-phosphate oxidoreductase from human placenta.  Eur J Biochem. 1986;  154 161-166
  • 17 Swierczynski J, Scislowski P WD, Aleksandrowicz Z, Zydowo M M. Intracellular distribution of fumarase in rat skeletal muscle.  Biochim Biophys Acta. 1983;  756 271-278
  • 18 Peterson G L. A simplification of the protein assay method of Lowry et al. which is more generally applicable.  Anal Biochem. 1977;  83 346-356
  • 19 Hsu S-M, Raine L, Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures.  J Histochem Cytochem. 1981;  29 577-580
  • 20 Mayer D, Metzger C, Leonetti P, Beier K, Benner A, Bannasch P. Differential expression of key enzymes of energy metabolism preneoplastic and neoplastic rat liver lesions induced by N-nitrosomorpholine and dehydroepiandrosterone.  Int J Cancer. 1998;  79 232-240
  • 21 Brinck U, Eigenbrodt E, Oehmke M, Mazurek S, Fisher G. L- and M2-pyruvate kinase expression in renal cell carcinomas and their metastases.  Virchows Arch. 1994;  424 177-185
  • 22 Balabanov S, Zimmermann U, Protzel C, Scharf C, Klebingat K J, Walther R. Tumor-related enzymes alterations in the clear cell type of human renal cell carcinoma identified by two-dimensional gel electrophoresis.  Eur J Biochem. 2001;  268 5977-5980
  • 23 Zampella E J, Bradley E L Jr., Pretlow T G 2nd. Glucose-6-phosphate dehydrogenase: a possible clinical indicator for prostatic carcinoma.  Cancer. 1982;  49 384-387
  • 24 Ledda-Columbano G M, Columbano A, Dessi S, Coni P, Chiodino C, Pani P. Enhancement of cholesterol synthesis and pentose phosphate pathway activity in proliferating hepatocyte nodules.  Carcinogenesis. 1985;  6 1371-1373
  • 25 Bannasch P. Pathogenesis of hepatocellular carcinoma: sequential cellular, molecular, and metabolic changes. In: Boyer JL, Ockner RK (eds) Progress in liver diseases. Volume XIV. Philadelphia; W. B. Saunders Company 1996: 161-197
  • 26 Bannash P, Mayer D, Hacker H J. Hepatocellular glycogenosis and hepatocarcinogenesis.  Biochim Biophys Acta. 1980;  605 217-245
  • 27 Wang H L, Lu D W, Yerian L M, Alsikafi N, Steinberg G, Hart J, Yang X J. Immunohistochemical distinction between primary adenocarcinoma of the bladder and secondary colorectal adenocarcinoma.  Am J Surg Pathol. 2001;  25 1380-1387
  • 28 Soslow R A, Rouse R V, Hendrickson M R, Silva E G, Longacre T A. Transitional cell neoplasms of the ovary and urinary bladder: a comparative immunohistochemical analysis.  Int J Gynecol Pathol. 1996;  15 257-265
  • 29 Dang C H, Semenza G L. Oncogenic alterations of metabolism.  Trends Biochem Sci. 1999;  24 68-72
  • 30 Jackowski S. Coordination of membrane phospholipid synthesis with the cell cycle.  J Biol Chem. 1994;  269 3858-3867

J. Swierczynski, M. D., Ph. D. 

Department of Biochemistry · Medical University of Gdansk

ul. Debinki 1 · 80-211 Gdansk · Poland

Fax: +48 (58) 349 14 65

Email: juls@amg.gda.pl