Horm Metab Res 2003; 35(10): 617-624
DOI: 10.1055/s-2003-43510
Original Clinical
© Georg Thieme Verlag Stuttgart · New York

The Effects of K-111, a New Insulin-sensitizer, on Metabolic Syndrome in Obese Prediabetic Rhesus Monkeys

N.  L.  Bodkin1 , J.  Pill2 , K.  Meyer2 , B.  C.  Hansen1
  • 1Obesity and Diabetes Research Center, School of Medicine, Dept. of Physiology, University of Maryland, Baltimore, MD, USA
  • 2Roche Diagnostics GmbH, Mannheim, Germany
Further Information

Publication History

Received 14 August 2002

Accepted after revision 18 June 2003

Publication Date:
07 November 2003 (online)

Abstract

K-111, formerly BM 17.0744, (2,2-dichloro-12-(4-chlorophenyl)-dodecanoic acid) is a new insulin-sensitizer with peroxisome proliferator-activated receptor (PPAR) alpha activity but without PPAR gamma activity. We determined the efficacy of K-111 in non-human primates in increasing insulin-stimulated glucose uptake and improving metabolic syndrome, assessing the general health-related effects. Six adult male obese normoglycemic prediabetic and insulin-resistant rhesus monkeys were studied on vehicle and following K-111 treatment (four-week chronic dosing each of 3 doses: 1, 3, and 10 mg/kg/d) with assessment of changes in substrate, hormone, and blood pressure measurements and alterations in insulin sensitivity using the euglycemic, hyperinsulinemic clamp technique. K-111 led to significantly decreased body weight and improved hyperinsulinemia, insulin sensitivity, hypertriglyceridemia, and HDL-cholesterol levels without adipogenesis or significant effects on fasting glucose, 24-hour urine glucose excretion, systolic or diastolic blood pressure, plasma fibrinogen, total cholesterol, or chemistry and hematology profile. These benefits are similar to the health-improving effects of calorie restriction, providing preliminary evidence that K-111 has excellent potential as a calorie-restriction mimetic agent. These results indicate the necessity of future study of K-111 for metabolic syndrome in humans, and suggest potential in reducing the risks of diabetes and cardiovascular disease.

References

  • 1 Himsworth H P. Diabetes mellitus: Its differentiation into insulin sensitive and insulin insensitive types.  Lancet. 1936;  1 127-130
  • 2 DeFronzo R A, Tobin J D, Andres R. Glucose clamp technique: A method for quantifying insulin secretion and resistance.  Am J Physiol. 1979;  237 E214-E223
  • 3 DeFronzo R, Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease.  Diabetes Care. 1991;  14 173-194
  • 4 Lillioja S. et al . Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians.  N Engl J Med,. 1993;  329 (27) 1988-92
  • 5 Kahn C R. Banting Lecture. Insulin action, diabetogenes, and the cause of type II diabetes.  Diabetes. 1994;  43 (8) 1066-1084
  • 6 Beck-Nielsen H. General characteristics of the insulin resistance syndrome: prevalence and heritability. European Group for the Study of Insulin Resistance (EGIR).  Drugs. 1999;  58 (Suppl 1) 7-10; discussion 75 - 82
  • 7 Vague J. The degree of masculine differentation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease.  Am J Clin Nutr. 1956;  4 20-34
  • 8 Reaven G. Banting lecture 1988: Role of insulin resistance in human disease.  Diabetes. 1988;  30 1595-1607
  • 9 Saltiel A R, Olefsky J M. Thiazolidinediones in the treatment of insulin resistance and type II diabetes.  Diabetes. 1996;  45 (12) 1661-1669
  • 10 Day C. Thiazolidinediones: a new class of antidiabetic drugs.  Diabet Med. 1999;  16 (3) 179-192
  • 11 Lehmann J M. et al . An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR α).  J Biol Chem. 1995;  270 (22) 12 953-12 956
  • 12 Meyer K. et al . Species differences in induction of hepatic enzymes by BM 17.0744, an activator of peroxisome proliferator-activated receptor alpha (PPAR a).  Arch Toxicol. 1999;  73 440-450
  • 13 Pill J, Meyer K. Reduction of risk factors for cardiovascular complications by BM 17.0744.  Cardiovasc Drug Rev. 1999;  17 246-264
  • 14 Meyer K. et al . ω-Substituted alkyl carboxylic acids as antidiabtetic and lipid-lowering agents.  Eur J Med Chem. 1998;  33 775-778
  • 15 Wurch T. et al . Pharmacological analysis of wild-type alpha, gamma and delta subtypes of the human peroxisome proliferator-activated receptor.  Naunyn Schmiedebergs Arch Pharmacol,. 2002;  365 (2) 133-140
  • 16 Pill J, Kuehnle H F. BM 17.0744: a structurally new antidiabetic compound with insulin- sensitizing and lipid-lowering activity.  Metabolism. 1999;  48 (1) 34-40
  • 17 Hansen B C, Bodkin N L. Heterogeneity of insulin responses: phases in the continuum leading to non-insulin-dependent diabetes mellitus.  Diabetologia. 1986;  29 713-719
  • 18 Bodkin N L, Metzger B L, Hansen B C. Hepatic glucose production and insulin sensitivity preceding diabetes in monkeys.  Am J Physiol. 1989;  256 (Endocrinol Metab) E676-E681
  • 19 Hansen B, Bodkin N L. β-cell hyperresponsiveness: earliest event in development of diabetes in monkeys.  Am J Physiol. 1990;  259 (Regulatory Integrative Comp Physiol 28) R612-R617
  • 20 Hannah J S. et al . Changes in lipoprotein concentrations during the development of noninsulin dependent diabetes mellitus in obese rhesus monkeys (Macaca mulatta).  J Clin Endocrinol Metab. 1991;  72 1067-1072
  • 21 Bodkin N L. et al . Insulin-like growth factor-I in non-insulin-dependent diabetic monkeys: Basal plasma concentrations and metabolic effects of exogenously administered biosynthetic hormone.  Metabolism. 1991;  40 1131-1137
  • 22 Bodkin N L, Hansen B C. Antihypertensive effects of captopril without adverse effects on glucose tolerance in hyperinsulinemic rhesus monkeys.  J Med Primatol. 1995;  24 1-6
  • 23 Ortmeyer H K. et al . In vivo D-chiroinositol activates skeletal muscle glycogen synthase and inactivates glycogen phosphorylase in rhesus monkeys.  J Nutr Biochem. 1995;  6 499-503
  • 24 Ortmeyer H K, Larner J, Hansen B C. Effects of D-chiroinositol added to a meal on plasma glucose and insulin in hyperinsulinemic rhesus monkeys.  Obes Res. 1995;  3 (4) 605S-608S
  • 25 Young A A. et al . Glucose-lowering and insulin-sensitizing actions of Exendin-4: Studies in obese (ob/ob, db/db) diabetic mice, diabetic Fatty Zucker rats and diabetic monkeys (Macaca mulatta).  Diabetes. 1999;  48 1026-1034
  • 26 Hannah J S. et al . Effects of acipimox on the metabolism of free fatty acids and VLDL triglyceride.  Acta Diabetologia. 1995;  32 279-293
  • 27 Winegar D A. et al . Effects of fenofibrate on lipid parameters in obese rhesus monkeys.  J Lipid Res. 2001;  42 (10) 1543-1551
  • 28 Kemnitz J W. et al . Pioglitazone increases insulin sensitivity, reduces blood glucose, insulin, and lipid levels, and lowers blood pressure, in obese, insulin-resistant rhesus monkeys.  Diabetes. 1994;  43 (2) 204-211
  • 29 Ortmeyer H K. et al . A thiazolidinedione improves in vivo insulin action on skeletal muscle glycogen synthase in insulin-resistant monkeys.  Int J Exp Diabetes Res. 2000;  1 (3) 195-202
  • 30 National Research Council Commission on Life Sciences - Institute of Laboratory Animal Resources .Guide for the care and use of laboratory animals. Washington, D.C.; National Academy Press 1996
  • 31 Hansen B C. et al . Neural influences on oscillations in basal plasma levels of insulin in monkeys.  Am J Physiol (Endocrinol Metab 1). 1981;  240 E5-E11
  • 32 Hansen B C. et al . Rapid oscillations of plasma insulin, glucagon, and glucose in obese and normal weight humans.  J Clin Endo Metab. 1982;  54 785-792
  • 33 Ortmeyer H K, Bodkin N L, Hansen B C. Adipose tissue glycogen synthase activation by in vivo insulin in spontaneously insulin-resistant and Type 2 (non-insulin-dependent) diabetic rhesus monkeys.  Diabetologia. 1993;  36 200-206
  • 34 Ortmeyer H K, Bodkin N L, Hansen B C. Insulin-mediated glycogen synthase activity in muscle of spontaneously insulin-resistant and diabetic rhesus monkeys.  Am J Physiol. 1993;  265 (Regulatory Integrative Comp Physiol 34) R552-R558
  • 35 Bogardus C. et al . Relationship between degree of obesity and in vivo insulin action in man.  Am J Physiol. 1985;  248 (Endocrinol Metab 11) E286-E291
  • 36 Bogardus C. et al . Correlation between muscle glycogen synthase activity and in vivo insulin action in man.  J Clin Invest. 1984;  73 1185-1190
  • 37 Chen Y-D, Reaven G. Insulin resistance and atherosclerosis.  Diabetes Reviews. 1997;  5 331-342
  • 38 Beck-Nielsen H, Groop L C. Metabolic and genetic characterization of prediabetic states. Sequence of events leading to non-insulin-dependent diabetes mellitus.  J Clin Invest. 1994;  94 (5) 1714-1721
  • 39 Taskinen M R. Insulin resistance and lipoprotein metabolism.  Curr Opin Lipidol. 1995;  6(3) 153-160
  • 40 Kohrt W M. et al . Insulin resistance in aging is related to abdominal obesity.  Diabetes. 1993;  42 273-281
  • 41 Ortmeyer H K. et al . In vivo D-chiroinositol activates skeletal muscle glycogen synthase and inactivates glycogen phosphorylase in normal and diabetic rhesus monkeys.  Diabetes. 1992;  41 106A
  • 42 Oliver W J. et al . A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport.  Proceedings of the National Academy of Sciences of the United States of America. 2001;  98 5306-5311
  • 43 Shimaya A. et al . The novel hypoglycemic agent YM440 normalizes hyperglycemia without changing body fat weight in diabetic db/db mice.  Metabolism. 2000;  49 411-417
  • 44 Hansen B C, Bodkin N L. Primary prevention of diabetes mellitus by prevention of obesity in monkeys.  Diabetes. 1993;  42 1809-1814
  • 45 Bodkin N L, Ortmeyer H K, Hansen B C. Long-term dietary restriction in older-aged rhesus monkeys: effects on insulin resistance.  J Gerontol A: Biol Sci Med Sci. 1995;  50 B142-B147
  • 46 Maegawa H. et al . Thiazolidine derivatives ameliorate high glucose-induced insulin resistance via the normalization of protein-tyrosine phosphatase activities.  J Biol Chem. 1995;  270 (13) 7724-7730
  • 47 Kobayashi M. et al . Pioglitazone increases insulin sensitivity by activating insulin receptor kinase.  Diabetes. 1992;  41 (4) 476-483
  • 48 Ribon V. et al . Thiazolidinediones and insulin resistance: peroxisome proliferatoractivated receptor gamma activation stimulates expression of the CAP gene.  Proc Natl Acad Sci USA. 1998;  95 (25) 14 751-14 756
  • 49 Ciaraldi T P. et al . Regulation of glucose transport in cultured muscle cells by novel hypoglycemic agents.  Metabolism. 1995;  44 (8) 976-981
  • 50 Fujiwara T. et al . Suppression of hepatic gluconeogenesis in long-term Troglitazone treated diabetic KK and C57BL/KsJ-db/db mice.  Metabolism. 1995;  44 486-490
  • 51 Juge-Aubry C E. et al . Regulation of the transcriptional activity of the peroxisome proliferator-activated receptor alpha by phosphorylation of a ligand-independent trans-activating domain.  J Biol Chem. 1999;  274 (15) 10 505-10 510
  • 52 Torra I P, Gervois P, Staels B. Peroxisome proliferator-activated receptor alpha in metabolic disease, inflammation, atherosclerosis and aging.  Curr Opin Lipidol. 1999;  10 151-159
  • 53 Guerre-Millo M. et al . Peroxisome proliferator-activated receptor alpha activators improve insulin sensitivity and reduce adiposity.  J Biol Chem. 2000;  275 (22) 16 638-16 642
  • 54 Ye J M. et al . Peroxisome proliferator-activated receptor (PPAR)-alpha activation lowers muscle lipids and improves insulin sensitivity in high fat-fed rats: comparison with PPAR-gamma activation.  Diabetes. 2001;  50 (2) 411-417
  • 55 Alberti K, Zimmett P. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1. Diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation.  Diabetic Medicine. 1998;  15 539-553
  • 56 Shibuya A. et al . An autopsy case of troglitazone-induced fulminant hepatitis [see comments].  Diabetes Care. 1998;  21 (12) 2140-2143
  • 57 Watkins P B, Whitcomb R W. Hepatic dysfunction associated with troglitazone [letter; comment].  N Engl J Med. 1998;  338 (13) 916-917
  • 58 Kemnitz J W. et al . Dietary restriction increases insulin sensitivity and lowers blood glucose in rhesus monkeys.  Am J Physiol. 1994;  266 E540-E547
  • 59 Lane M A. et al . Diet restriction in rhesus monkeys lowers fasting and glucose-stimulated glucoregulatory end points.  Am J Physiol. 1995;  268 E941-E948
  • 60 Ortmeyer H K, Bodkin N L, Hansen B C. Chronic caloric restriction alters glycogen metabolism in rhesus monkeys.  Obes Res. 1994;  2 549-555
  • 61 Cefalu W T. et al . A study of caloric restriction and cardiovascular aging in cynomolgus monkeys (Macaca fascicularis): a potential model for aging research.  J Gerontol A Biol Sci Med Sci. 1997;  52 (1) B10-B19

N. L. Bodkin, Ph. D.

Obesity and Diabetes Research Center, Dept. of Physiology, University of Maryland ·

10 S. Pine St. MSTF 6-00 · Baltimore · MD 21201 · USA

Phone: + 1 (410) 706-3904

Fax: + 1 (410) 706-7540 ·

Email: nbodkin678@aol.com