Subscribe to RSS
DOI: 10.1055/s-2003-43510
The Effects of K-111, a New Insulin-sensitizer, on Metabolic Syndrome in Obese Prediabetic Rhesus Monkeys
Publication History
Received 14 August 2002
Accepted after revision 18 June 2003
Publication Date:
07 November 2003 (online)
Abstract
K-111, formerly BM 17.0744, (2,2-dichloro-12-(4-chlorophenyl)-dodecanoic acid) is a new insulin-sensitizer with peroxisome proliferator-activated receptor (PPAR) alpha activity but without PPAR gamma activity. We determined the efficacy of K-111 in non-human primates in increasing insulin-stimulated glucose uptake and improving metabolic syndrome, assessing the general health-related effects. Six adult male obese normoglycemic prediabetic and insulin-resistant rhesus monkeys were studied on vehicle and following K-111 treatment (four-week chronic dosing each of 3 doses: 1, 3, and 10 mg/kg/d) with assessment of changes in substrate, hormone, and blood pressure measurements and alterations in insulin sensitivity using the euglycemic, hyperinsulinemic clamp technique. K-111 led to significantly decreased body weight and improved hyperinsulinemia, insulin sensitivity, hypertriglyceridemia, and HDL-cholesterol levels without adipogenesis or significant effects on fasting glucose, 24-hour urine glucose excretion, systolic or diastolic blood pressure, plasma fibrinogen, total cholesterol, or chemistry and hematology profile. These benefits are similar to the health-improving effects of calorie restriction, providing preliminary evidence that K-111 has excellent potential as a calorie-restriction mimetic agent. These results indicate the necessity of future study of K-111 for metabolic syndrome in humans, and suggest potential in reducing the risks of diabetes and cardiovascular disease.
Key words
K-111 - BM 17.0744 - Hyperinsulinemia - Insulin resistance syndrome - Metabolic syndrome X - Dyslipidemia - Type 2 diabetes mellitus - Peroxisome proliferator-activated receptor α - Thiazolidinedione - Calorie restriction mimetic
References
- 1 Himsworth H P. Diabetes mellitus: Its differentiation into insulin sensitive and insulin insensitive types. Lancet. 1936; 1 127-130
- 2 DeFronzo R A, Tobin J D, Andres R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am J Physiol. 1979; 237 E214-E223
- 3 DeFronzo R, Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991; 14 173-194
- 4 Lillioja S. et al . Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. N Engl J Med,. 1993; 329 (27) 1988-92
- 5 Kahn C R. Banting Lecture. Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes. 1994; 43 (8) 1066-1084
- 6 Beck-Nielsen H. General characteristics of the insulin resistance syndrome: prevalence and heritability. European Group for the Study of Insulin Resistance (EGIR). Drugs. 1999; 58 (Suppl 1) 7-10; discussion 75 - 82
- 7 Vague J. The degree of masculine differentation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am J Clin Nutr. 1956; 4 20-34
- 8 Reaven G. Banting lecture 1988: Role of insulin resistance in human disease. Diabetes. 1988; 30 1595-1607
- 9 Saltiel A R, Olefsky J M. Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes. 1996; 45 (12) 1661-1669
- 10 Day C. Thiazolidinediones: a new class of antidiabetic drugs. Diabet Med. 1999; 16 (3) 179-192
- 11 Lehmann J M. et al . An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR α). J Biol Chem. 1995; 270 (22) 12 953-12 956
- 12 Meyer K. et al . Species differences in induction of hepatic enzymes by BM 17.0744, an activator of peroxisome proliferator-activated receptor alpha (PPAR a). Arch Toxicol. 1999; 73 440-450
- 13 Pill J, Meyer K. Reduction of risk factors for cardiovascular complications by BM 17.0744. Cardiovasc Drug Rev. 1999; 17 246-264
- 14 Meyer K. et al . ω-Substituted alkyl carboxylic acids as antidiabtetic and lipid-lowering agents. Eur J Med Chem. 1998; 33 775-778
- 15 Wurch T. et al . Pharmacological analysis of wild-type alpha, gamma and delta subtypes of the human peroxisome proliferator-activated receptor. Naunyn Schmiedebergs Arch Pharmacol,. 2002; 365 (2) 133-140
- 16 Pill J, Kuehnle H F. BM 17.0744: a structurally new antidiabetic compound with insulin- sensitizing and lipid-lowering activity. Metabolism. 1999; 48 (1) 34-40
- 17 Hansen B C, Bodkin N L. Heterogeneity of insulin responses: phases in the continuum leading to non-insulin-dependent diabetes mellitus. Diabetologia. 1986; 29 713-719
- 18 Bodkin N L, Metzger B L, Hansen B C. Hepatic glucose production and insulin sensitivity preceding diabetes in monkeys. Am J Physiol. 1989; 256 (Endocrinol Metab) E676-E681
- 19 Hansen B, Bodkin N L. β-cell hyperresponsiveness: earliest event in development of diabetes in monkeys. Am J Physiol. 1990; 259 (Regulatory Integrative Comp Physiol 28) R612-R617
- 20 Hannah J S. et al . Changes in lipoprotein concentrations during the development of noninsulin dependent diabetes mellitus in obese rhesus monkeys (Macaca mulatta). J Clin Endocrinol Metab. 1991; 72 1067-1072
- 21 Bodkin N L. et al . Insulin-like growth factor-I in non-insulin-dependent diabetic monkeys: Basal plasma concentrations and metabolic effects of exogenously administered biosynthetic hormone. Metabolism. 1991; 40 1131-1137
- 22 Bodkin N L, Hansen B C. Antihypertensive effects of captopril without adverse effects on glucose tolerance in hyperinsulinemic rhesus monkeys. J Med Primatol. 1995; 24 1-6
- 23 Ortmeyer H K. et al . In vivo D-chiroinositol activates skeletal muscle glycogen synthase and inactivates glycogen phosphorylase in rhesus monkeys. J Nutr Biochem. 1995; 6 499-503
- 24 Ortmeyer H K, Larner J, Hansen B C. Effects of D-chiroinositol added to a meal on plasma glucose and insulin in hyperinsulinemic rhesus monkeys. Obes Res. 1995; 3 (4) 605S-608S
- 25 Young A A. et al . Glucose-lowering and insulin-sensitizing actions of Exendin-4: Studies in obese (ob/ob, db/db) diabetic mice, diabetic Fatty Zucker rats and diabetic monkeys (Macaca mulatta). Diabetes. 1999; 48 1026-1034
- 26 Hannah J S. et al . Effects of acipimox on the metabolism of free fatty acids and VLDL triglyceride. Acta Diabetologia. 1995; 32 279-293
- 27 Winegar D A. et al . Effects of fenofibrate on lipid parameters in obese rhesus monkeys. J Lipid Res. 2001; 42 (10) 1543-1551
- 28 Kemnitz J W. et al . Pioglitazone increases insulin sensitivity, reduces blood glucose, insulin, and lipid levels, and lowers blood pressure, in obese, insulin-resistant rhesus monkeys. Diabetes. 1994; 43 (2) 204-211
- 29 Ortmeyer H K. et al . A thiazolidinedione improves in vivo insulin action on skeletal muscle glycogen synthase in insulin-resistant monkeys. Int J Exp Diabetes Res. 2000; 1 (3) 195-202
- 30 National Research Council Commission on Life Sciences - Institute of Laboratory Animal Resources .Guide for the care and use of laboratory animals. Washington, D.C.; National Academy Press 1996
- 31 Hansen B C. et al . Neural influences on oscillations in basal plasma levels of insulin in monkeys. Am J Physiol (Endocrinol Metab 1). 1981; 240 E5-E11
- 32 Hansen B C. et al . Rapid oscillations of plasma insulin, glucagon, and glucose in obese and normal weight humans. J Clin Endo Metab. 1982; 54 785-792
- 33 Ortmeyer H K, Bodkin N L, Hansen B C. Adipose tissue glycogen synthase activation by in vivo insulin in spontaneously insulin-resistant and Type 2 (non-insulin-dependent) diabetic rhesus monkeys. Diabetologia. 1993; 36 200-206
- 34 Ortmeyer H K, Bodkin N L, Hansen B C. Insulin-mediated glycogen synthase activity in muscle of spontaneously insulin-resistant and diabetic rhesus monkeys. Am J Physiol. 1993; 265 (Regulatory Integrative Comp Physiol 34) R552-R558
- 35 Bogardus C. et al . Relationship between degree of obesity and in vivo insulin action in man. Am J Physiol. 1985; 248 (Endocrinol Metab 11) E286-E291
- 36 Bogardus C. et al . Correlation between muscle glycogen synthase activity and in vivo insulin action in man. J Clin Invest. 1984; 73 1185-1190
- 37 Chen Y-D, Reaven G. Insulin resistance and atherosclerosis. Diabetes Reviews. 1997; 5 331-342
- 38 Beck-Nielsen H, Groop L C. Metabolic and genetic characterization of prediabetic states. Sequence of events leading to non-insulin-dependent diabetes mellitus. J Clin Invest. 1994; 94 (5) 1714-1721
- 39 Taskinen M R. Insulin resistance and lipoprotein metabolism. Curr Opin Lipidol. 1995; 6(3) 153-160
- 40 Kohrt W M. et al . Insulin resistance in aging is related to abdominal obesity. Diabetes. 1993; 42 273-281
- 41 Ortmeyer H K. et al . In vivo D-chiroinositol activates skeletal muscle glycogen synthase and inactivates glycogen phosphorylase in normal and diabetic rhesus monkeys. Diabetes. 1992; 41 106A
- 42 Oliver W J. et al . A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proceedings of the National Academy of Sciences of the United States of America. 2001; 98 5306-5311
- 43 Shimaya A. et al . The novel hypoglycemic agent YM440 normalizes hyperglycemia without changing body fat weight in diabetic db/db mice. Metabolism. 2000; 49 411-417
- 44 Hansen B C, Bodkin N L. Primary prevention of diabetes mellitus by prevention of obesity in monkeys. Diabetes. 1993; 42 1809-1814
- 45 Bodkin N L, Ortmeyer H K, Hansen B C. Long-term dietary restriction in older-aged rhesus monkeys: effects on insulin resistance. J Gerontol A: Biol Sci Med Sci. 1995; 50 B142-B147
- 46 Maegawa H. et al . Thiazolidine derivatives ameliorate high glucose-induced insulin resistance via the normalization of protein-tyrosine phosphatase activities. J Biol Chem. 1995; 270 (13) 7724-7730
- 47 Kobayashi M. et al . Pioglitazone increases insulin sensitivity by activating insulin receptor kinase. Diabetes. 1992; 41 (4) 476-483
- 48 Ribon V. et al . Thiazolidinediones and insulin resistance: peroxisome proliferatoractivated receptor gamma activation stimulates expression of the CAP gene. Proc Natl Acad Sci USA. 1998; 95 (25) 14 751-14 756
- 49 Ciaraldi T P. et al . Regulation of glucose transport in cultured muscle cells by novel hypoglycemic agents. Metabolism. 1995; 44 (8) 976-981
- 50 Fujiwara T. et al . Suppression of hepatic gluconeogenesis in long-term Troglitazone treated diabetic KK and C57BL/KsJ-db/db mice. Metabolism. 1995; 44 486-490
- 51 Juge-Aubry C E. et al . Regulation of the transcriptional activity of the peroxisome proliferator-activated receptor alpha by phosphorylation of a ligand-independent trans-activating domain. J Biol Chem. 1999; 274 (15) 10 505-10 510
- 52 Torra I P, Gervois P, Staels B. Peroxisome proliferator-activated receptor alpha in metabolic disease, inflammation, atherosclerosis and aging. Curr Opin Lipidol. 1999; 10 151-159
- 53 Guerre-Millo M. et al . Peroxisome proliferator-activated receptor alpha activators improve insulin sensitivity and reduce adiposity. J Biol Chem. 2000; 275 (22) 16 638-16 642
- 54 Ye J M. et al . Peroxisome proliferator-activated receptor (PPAR)-alpha activation lowers muscle lipids and improves insulin sensitivity in high fat-fed rats: comparison with PPAR-gamma activation. Diabetes. 2001; 50 (2) 411-417
- 55 Alberti K, Zimmett P. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1. Diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabetic Medicine. 1998; 15 539-553
- 56 Shibuya A. et al . An autopsy case of troglitazone-induced fulminant hepatitis [see comments]. Diabetes Care. 1998; 21 (12) 2140-2143
- 57 Watkins P B, Whitcomb R W. Hepatic dysfunction associated with troglitazone [letter; comment]. N Engl J Med. 1998; 338 (13) 916-917
- 58 Kemnitz J W. et al . Dietary restriction increases insulin sensitivity and lowers blood glucose in rhesus monkeys. Am J Physiol. 1994; 266 E540-E547
- 59 Lane M A. et al . Diet restriction in rhesus monkeys lowers fasting and glucose-stimulated glucoregulatory end points. Am J Physiol. 1995; 268 E941-E948
- 60 Ortmeyer H K, Bodkin N L, Hansen B C. Chronic caloric restriction alters glycogen metabolism in rhesus monkeys. Obes Res. 1994; 2 549-555
- 61 Cefalu W T. et al . A study of caloric restriction and cardiovascular aging in cynomolgus monkeys (Macaca fascicularis): a potential model for aging research. J Gerontol A Biol Sci Med Sci. 1997; 52 (1) B10-B19
N. L. Bodkin, Ph. D.
Obesity and Diabetes Research Center, Dept. of Physiology, University of Maryland ·
10 S. Pine St. MSTF 6-00 · Baltimore · MD 21201 · USA
Phone: + 1 (410) 706-3904
Fax: + 1 (410) 706-7540 ·
Email: nbodkin678@aol.com