Minim Invasive Neurosurg 2003; 46(5): 257-264
DOI: 10.1055/s-2003-44447
Original Article
© Georg Thieme Verlag Stuttgart · New York

Frameless Neuronavigation Using the ISG-System in Practice: From Craniotomy to Delineation of Lesion

G.  Kleinpeter1 , C.  Lothaller1
  • 1Neurochirurgische Abteilung, Donauspital, Vienna, Austria
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
19. November 2003 (online)

Abstract

The overall performance of a “pointer” neuronavigation system (the ISG ALLEGRO Viewing Wand™) in everyday surgical use was evaluated by investigating the practical utility of the technical set-up for one particular surgical task. The basis of the analysis was the numerical evaluation of four areas of fundamental importance for most brain surgery: site and size of craniotomy, localisation of lesion, the trajectory through the brain, and the delineation of the lesion. In a protocol of 65 patients we based our examination on a subjective 4-point rating scale ranging from 0 (= no help) to 3 (= very helpful) for each of the four above categories. We investigated the potential influence of three factors: the lesions histology (4 groups), its size (3 categories) and the depth from the cortical surface (3 levels). Our experience is that the histology of the lesions has significant influence on the relative usefulness of neuronavigation for craniotomy (P < 0.017) and for delineation of the lesion (P < 0.003). We found neuronavigation most helpful for removing gliomas. Second, this system was found to be very helpful in locating small, hitherto hard-to-find, lesions (P < 0.01). Lesion's depth had no effect on the ratings (P > 0.2). Overall, the use of this system led to more precise skin incisions, better site and size of craniotomies tailored to the pathology, the trajectory through the brain, and to more precise delineation of the lesion.

References

  • 1 Barnett G H, Kormos D W, Steiner C P, Weisenberger J. Intraoperative localization using an armless, frameless stereotactic wand. Technical note.  J Neurosurgy. 1993;  78 510-514
  • 2 Barnett G H, Kormos D W, Steiner C P, Weisenberger J. Use of a frameless, armless stereotactic wand for brain tumor localization with two-dimensional and three-dimensional neuroimaging.  Neurosurgery. 1993;  33 674-678
  • 3 Ebeling U, Rikkli D, Huber P, Reulen H J. The coronal suture, a useful bony landmark in neurosurgery?.  Acta Neurochir (Wien). 1987;  89 30-134
  • 4 Day J D, Kellog J X, Tschabitscher M, Fukushima T. Surface and superficial surgical anatomy of the posterolateral cranial base: Significance for surgical planning and approach.  Neurosurgery. 1996;  38 1079-1084
  • 5 Galloway Jr R L, Maciunas R J, Latimer J W. The accuracies of four stereotactic frame systems: an independent assessment.  Biomed Instrum Technol. 1991;  25 457-460
  • 6 Giorgi C. Intraoperative fusion of field images with CT/MRI data by means of a stereotactic mechanical arm.  Minim Invas Neurosurg. 1994;  37 53-55
  • 7 Golfinos J G, Fitzpatrick B C, Smith L R, Spetzler R F. Clinical use of a frameless stereotactic arm: result of 325 cases.  J Neurosurg. 1995;  83 197-205
  • 8 Horstmann G A, Reinhardt H F. Ranging accuracy test of the sonic microstereometric system.  Neurosurgery. 1994;  34 754-755
  • 9 Hu X, Tan K K, Levin D N, Galhotra S, Mullan J F, Hekmatpanah J, Spire J P. Three-dimensional magnetic resonance images of the brain: application to neurosurgical planning.  J Neurosurg. 1990;  72 433-440
  • 10 Hund M, Rezai A R, Kronberg E, Cappell J, Zonenshayn M, Ribary U, Kelly P J, Llinas R. Magnetoencephalographic mapping: Basis of a new functional risk profile in the selection of patients with cortical brain lesions.  Neurosurgery. 1997;  40 936-943
  • 11 Jacques S, Shelden C H, McCann G D, Freshwater D B, Rand R. Computerized three-dimensional stereotactic removal of small central nervous lesions in patients.  J Neurosurg. 1980;  53 816-820
  • 12 Kelly P J, Alker Jr G J, Goerss S. Computer-assisted stereotactic laser microsurgery for the treatment of intracranial neoplasms.  Neurosurgery. 1982;  10 324-331
  • 13 Kelly P J. Volumetric stereotaxis and computer-assisted stereotactic resection of subcortical lesions. In: Lundsford LD (ed.). Modern stereotactic neurosurgery. Boston: Marinus Nijhoff 1988: 169-184
  • 14 Koivukangas J, Louhisalmi Y, Alakuijala J, Oikarinen J. Ultrasound-controlled neuronavigator-guided brain surgery.  J Neurosurg. 1993;  79 36-42
  • 15 Laborde G, Gilsbach J, Harders A, Klimek L, Moesges R, Krybus W. Computer assisted localizer for planning of surgery and intra-operative orientation.  Acta Neurochir. 1992;  119 166-170
  • 16 Lang J, Samii A. Retrosigmoid approach to the posterior cranial fossa: An anatomical study.  Acta Neurochir. 1991;  111 147-153
  • 17 Penning L. CT localization of a convexity brain tumor on the scalp. Technical note.  J Neurosurg. 1987;  66 474-476
  • 18 Pillay P K. Image-guided stereotactic neurosurgery with the multicoordinate manipulator microscope.  Surg Neurol. 1997;  47 171-177
  • 19 Reinhardt H F, Horstmann G A, Gratzl O. Sonic stereometry in microsurgical procedures for deep-seated brain tumors and vascular malformations.  Neurosurgery. 1993;  32 51-57
  • 20 Reinhardt H F, Trippel M, Westermann G, Horstmann G A, Gratzl O. Computer assisted brain surgery for small lesions in the central sensorimotor region.  Acta Neurochir. 1996;  138 200-205
  • 21 Roberts D W, Strohbehn J W, Hatch J F, Murray W, Kettenberger H. A frameless stereotactic integration of computerized tomographic imaging and the operating microscope.  J Neurosurg. 1986;  65 545-549
  • 22 Roessler K, Ungersboeck K, Dietrich W, Aichholzer M, Hittmeir K, Matula Ch, Czech Th, Koos W T. Frameless stereotactic guided neurosurgery: Clinical experience with an infrared based pointer device navigation system.  Acta Neurochir. 1997;  139 551-559
  • 23 Shelden C H, McCann G, Jacques S, Lutes H R, Frazier R E, Katz R, Kuki R. Development of a computerized microstereotactic method for localization and removal of minute CNS lesions under direct 3-D vision. Technical report.  J Neurosurg. 1980;  52 21-27
  • 24 Sipos E P, Tebo S A, Zinreich S J, Long D M, Brem H. In vivo accuracy testing and clinical experience with the ISG viewing wand.  Neurosurgery. 1996;  39 194-204
  • 25 Spetzger U, Laborde G, Gilsbach J M. Frameless neuronavigation in modern neurosurgery.  Minim Invas Neurosurg. 1995;  38 163-166
  • 26 Tan K K, Greszczuk R, Levin D N, Pelizzari C A, Chen G TY, Erickson R K, Johnson D, Dohrmann G J. A frameless stereotactic approach to neurosurgical planning based on retrospective patient-image registration.  J Neurosurg. 1993;  79 296-303
  • 27 Ungersböck K, Aichholzer M, Günthner M, Rössler K, Görzer H, Koos W T. Cavernous malformations: From frame-based to frameless stereotactic localisation.  Minim Invas Neurosurg. 1997;  40 134-138
  • 28 Watanabe E, Mayanagi Y, Kosugi Y, Manaka S, Takakura K. Open surgery assisted by the neuronavigator, a stereotactic, articulated, sensitive arm.  Surg Neurol. 1987;  27 543-547
  • 29 Westermann B, Trippel M, Reinhart H. Optically-navigable operating microscope for image-guided surgery.  Minim Invas Neurosurg. 1995;  38 112-116
  • 30 Zülch K J. Brain tumors, their biology and pathology, 3rd. Berlin, Heidelberg, New York, Tokyo: Springer 1986: 102

Dr. Günther Kleinpeter

Neurochirurgie, Donauspital

Langobardenstraße 122

1220 Wien

Austria

Telefon: +431 28802 3602

Fax: +431 28802 3680

eMail: g.kleinpeter@billrothhaus.at