Semin Thromb Hemost 2003; 29(5): 479-488
DOI: 10.1055/s-2003-44556
Copyright © 2003 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Shear Stress and von Willebrand Factor in Health and Disease

Han-Mou Tsai
  • Associate Professor of Medicine, Division of Hematology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
21. November 2003 (online)

ABSTRACT

Blood flow in the circulation creates shear stress that affects cell functions and cell-cell interactions. Recent studies reveal that shear stress is also critical in the homeostasis of the plasma glycoprotein von Willebrand factor (vWF). Because of its large molecular size, vWF has a flexible conformation that is uniquely responsive to shear stress. Exposure to shear stress causes conformational unfolding of vWF, enhancing its susceptibility to cleavage by a plasma zinc metalloprotease (a disintegrin and metalloprotease with thrombospondin type 1 motif [ADAMTS13]). In the absence of ADAMTS13, shear stress increases the capacity of vWF to support platelet aggregation. In normal individuals, a balance between endothelial secretion of an ultralarge form of vWF and intravascular proteolysis determines the size distribution of vWF multimers that seems to be optimum for hemostasis without imposing the risk of unwarranted platelet aggregation. In type 2A (group 2) von Willebrand disease, the mutant vWF is excessively susceptible to cleavage by ADAMTS13, resulting in a decrease of large vWF multimers and bleeding diathesis. In patients with aortic stenosis or the hemolytic-uremic syndrome, abnormally high levels of shear stress across the stenotic valve or in the microcirculation inflicted with thrombosis may promote cleavage of vWF by ADAMTS13, contributing to the loss of large multimers commonly observed among these patients. Conversely, a deficiency in ADAMTS13 because of genetic mutations or autoimmune inhibitors causes vWF- and platelet-rich microvascular thrombosis characteristic of thrombotic thrombocytopenic purpura.

REFERENCES

  • 1 Fisher A B, Chien S, Barakat A I, Nerem R M. Endothelial cellular response to altered shear stress.  Am J Physiol Lung Cell Mol Physiol . 2001;  281 L529-L533
  • 2 Chow T W, Hellums J D, Moake J L, Kroll M H. Shear stress-induced von Willebrand factor binding to platelet glycoprotein Ib initiates calcium influx associated with aggregation.  Blood . 1992;  80 113-120
  • 3 Handin R I, Wagner D D. Molecular and cellular biology of von Willebrand factor.  Prog Hemost Thromb . 1989;  9 233-259
  • 4 Katsumi A, Tuley E A, Bodo I, Sadler J E. Localization of disulfide bonds in the cystine knot domain of human von Willebrand factor.  J Biol Chem . 2000;  275 25585-25594
  • 5 Tsai H M, Nagel R L, Hatcher V B, Sussman I I. Multimeric composition of endothelial cell-derived von Willebrand factor.  Blood . 1989;  73 2074-2076
  • 6 Tsai H M, Nagel R L, Hatcher V B, Seaton A C, Sussman I I. The high molecular weight form of endothelial cell von Willebrand factor is released by the regulated pathway.  Br J Haematol . 1991;  79 239-245
  • 7 Kaul D K, Nagel R L, Chen D, Tsai H M. Sickle erythrocyte-endothelial interactions in microcirculation: the role of von Willebrand factor and implications for vasoocclusion.  Blood . 1993;  81 2429-2438
  • 8 Dent J A, Berkowitz S D, Ware J, Kasper C K, Ruggeri Z M. Identification of a cleavage site directing the immunochemical detection of molecular abnormalities in type IIA von Willebrand factor.  Proc Natl Acad Sci USA . 1990;  87 6306-6310
  • 9 Fowler W E, Fretto L J, Hamilton K K, Erickson H P, McKee P A. Substructure of human von Willebrand factor.  J Clin Invest . 1985;  76 1491-1500
  • 10 Tsai H M, Nagel R L, Hatcher V B, Sussman I I. Endothelial cell-derived high molecular weight von Willebrand factor is converted into the plasma multimer pattern by granulocyte proteases.  Biochem Biophys Res Commun . 1989;  158 980-985
  • 11 Tsai H M, Sussman I I, Nagel R L. Shear stress enhances the proteolysis of von Willebrand factor in normal plasma.  Blood . 1994;  83 2171-2179
  • 12 Furlan M, Robles R, Lämle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis.  Blood . 1996;  87 4223-4234
  • 13 Tsai H M. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion.  Blood . 1996;  87 4235-4244
  • 14 Levy G G, Nichols W C, Lian E C. et al . Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura.  Nature . 2001;  413 488-494
  • 15 Soejima K, Mimura N, Hirashima M. et al . A novel human metalloprotease synthesized in the liver and secreted into the blood: possibly, the von Willebrand factor-cleaving protease?.  J Biochem (Tokyo) . 2001;  130 475-480
  • 16 Zheng X, Chung D, Takayama T K. et al . Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura.  J Biol Chem . 2001;  276 41059-41063
  • 17 Tsai H M, Sussman I I, Ginsburg D. et al . Proteolytic cleavage of recombinant type 2A von Willebrand factor mutants R834W and R834Q: inhibition by doxycycline and by monoclonal antibody VP-1.  Blood . 1997;  89 1954-1962
  • 18 Slayter H, Loscalzo J, Bockenstedt P, Handin R I. Native conformation of human von Willebrand protein. Analysis by electron microscopy and quasi-elastic light scattering.  J Biol Chem . 1985;  260 8559-8563
  • 19 Siedlecki C A, Lestini B J, Kottke-Marchant K K. et al . Shear-dependent changes in the three-dimensional structure of human von Willebrand factor.  Blood . 1996;  88 2939-2950
  • 20 Weiss H J, Turitto V T, Baumgartner H R. Effect of shear rate on platelet interaction with subendothelium in citrated and native blood. I. Shear rate-dependent decrease of adhesion in von Willebrand's disease and the Bernard-Soulier syndrome.  J Lab Clin Med . 1978;  92 750-764
  • 21 Moake J L, Turner N A, Stathopoulos N A, Nolasco L H, Hellums J D. Involvement of large plasma von Willebrand factor (vWF) multimers and unusually large vWF forms derived from endothelial cells in shear stress-induced platelet aggregation.  J Clin Invest . 1986;  78 1456-1461
  • 22 Tsai H M. Von Willebrand factor, ADAMTS13, and thrombotic thrombocytopenic purpura.  J Mol Med . 2002;  80 639-647
  • 23 Gill J C, Wilson A D, Endres-Brooks J, Montgomery R R. Loss of the largest von Willebrand factor multimers from the plasma of patients with congenital cardiac defects.  Blood . 1986;  67 758-761
  • 24 O'Brien J R, Tsai H M, Etherington M D. Defective von Willebrand factor activity detected by the filterometer in three clinical conditions.  Platelets . 2000;  11 388-394
  • 25 Veyradier A, Balian A, Wolf M. et al . Abnormal von Willebrand factor in bleeding angiodysplasias of the digestive tract.  Gastroenterology . 2001;  120 346-353
  • 26 Tsai H M, Chandler W L, Sarode R. et al . Von Willebrand factor and von Willebrand factor-cleaving metalloprotease activity in Escherichia coli O157:H7-associated hemolytic uremic syndrome.  Pediatr Res . 2001;  49 653-659
  • 27 Olsson M, Hultcrantz R, Schulman S, Wallgren E. Acquired platelet dysfunction may be an aetiologic factor in Heyde's syndrome-normalization of bleeding time after aortic valve replacement.  J Intern Med . 2002;  252 516-523
  • 28 Pareti F I, Lattuada A, Bressi C. et al . Proteolysis of von Willebrand factor and shear stress-induced platelet aggregation in patients with aortic valve stenosis.  Circulation . 2000;  102 1290-1295
  • 29 Bukowski R M. Thrombotic thrombocytopenic purpura. A review.  Prog Hemost Thromb . 1982;  6 287-337
  • 30 Furlan M, Robles R, Solenthaler M, Lämmle B. Acquired deficiency of von Willebrand factor-cleaving protease in a patient with thrombotic thrombocytopenic purpura.  Blood . 1998;  91 2839-2846
  • 31 Furlan M, Robles R, Galbusera M. et al . von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome.  N Engl J Med . 1998;  339 1578-1584
  • 32 Tsai H M, Lian E C. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura.  N Engl J Med . 1998;  339 1585-1594
  • 33 Rock G A, Shumak K H, Buskard N A. et al . Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. Canadian Apheresis Study Group.  N Engl J Med . 1991;  325 393-397
  • 34 Remuzzi G. HUS and TTP: variable expression of a single entity.  Kidney Int . 1987;  32 292-308
  • 35 Tsai H M. Deficiency of ADAMTS13 causes thrombotic thrombocytopenic purpura.  Arterioscler Thromb Vasc Biol . 2003;  23 388-396
  • 36 Tsai H M, Shulman K. Rituximab induces remission of cerebral ischemia caused by thrombotic thrombocytopenic purpura.  Eur J Haematol . 2003;  70 183-185
  • 37 Katz J A, Moake J L, McPherson P D. et al . Relationship between human development and disappearance of unusually large von Willebrand factor multimers from plasma.  Blood . 1989;  73 1851-1858
  • 38 Weinstein M J, Blanchard R, Moake J L, Vosburgh E, Moise K. Fetal and neonatal von Willebrand factor (vWF) is unusually large and similar to the vWF in patients with thrombotic thrombocytopenic purpura.  Br J Haematol . 1989;  72 68-72
  • 39 Tsai H M, Sarode R, Downes K A. Ultralarge von Willebrand factor multimers and normal ADAMTS13 activity in the umbilical cord blood.  Thromb Res . 2002;  108 121-125
  • 40 Lee T P, Bouhassira E E, Lyubsky S, Tsai H M. ADAMTS13, the von Willebrand factor cleaving metalloprotease, is expressed in the perisinusoidal cells of the liver (Abst).  Blood . 2002;  100 497a
  • 41 Andrew M, Paes B, Milner R. et al . Development of the human coagulation system in the full-term infant.  Blood . 1987;  70 165-172
  • 42 Nichols T C, Bellinger D A, Reddick R L. et al . The roles of von Willebrand factor and factor VIII in arterial thrombosis: studies in canine von Willebrand disease and hemophilia A.  Blood . 1993;  81 2644-2651
  • 43 Whincup P H, Danesh J, Walker M. et al . von Willebrand factor and coronary heart disease: prospective study and meta-analysis.  Eur Heart J . 2002;  23 1764-1770
  • 44 Catto A J, Carter A M, Barrett J H. et al . von Willebrand factor and factor VIII: C in acute cerebrovascular disease. Relationship to stroke subtype and mortality.  Thromb Haemost . 1997;  77 1104-1108
  • 45 Jansson J H, Nilsson T K, Johnson O. von Willebrand factor in plasma: a novel risk factor for recurrent myocardial infarction and death.  Br Heart J . 1991;  66 351-355