Cent Eur Neurosurg 2003; 64(4): 166-170
DOI: 10.1055/s-2003-44620
Original Article

© Georg Thieme Verlag Stuttgart · New York

Frameless Stereotactic Brain Biopsy Procedures Using the Stealth Station: Indications, Accuracy and Results

Neuronavigationsgestützte Hirnbiopsie mit der Stealth Station: Indikationen, Genauigkeit und ErgebnisseJ. Gralla1 , C. Nimsky1 , M. Buchfelder1 , R. Fahlbusch1 , O. Ganslandt1
  • 1Department of Neurosurgery, University Erlangen-Nürnberg, Germany
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
21. November 2003 (online)

Abstract

This study presents the results of 57 stereotactic brain biopsies using a frameless neuronavigation system, the Stealth Station. The supratentorial lesions had a mean diameter of 33 mm and a mean distance of 32 mm from the entry point at brain surface. In all cases the stereotactic procedure was planned in the preoperative 3-D magnetic resonance data set. In seven cases additional data for identification of eloquent brain areas was integrated from magnetoencephalography or functional magnetic resonance imaging. During surgery the samples were sent to neuropathological examination and the operation completed after the confirmation of pathological tissue. Using this method, in 56 cases a pathological tissue was obtained and a diagnostic yield of 98 % was achieved. In two cases (3.5 %) a new neurological deficit remained (hemiparesis and visual field deficit). The mean operation time was 92 minutes including examination of frozen sections.
The results of our series demonstrate, that frameless stereotactic systems can also be reliably applied for biopsy of supratentorial lesions larger than 15 mm.
Frameless stereotaxy in combination with intraoperative pathological confirmation is a safe and reliable method for stereotactic brain biopsy with a diagnostic yield comparable to frame-based stereotaxy.

Zusammenfassung

In der vorliegenden Studie werden die Ergebnisse von 57 stereotaktischen diagnostischen Biopsien unter Verwendung der Stealth Station vorgestellt. Die Planung der Operation erfolgte anhand von dreidimensionalen Magnetresonanzdatensätzen, in sieben Fällen wurden zusätzlich die benachbarten eloquenten Hirnareale mittels Magnetoenzephalographie oder funktioneller Magnetresonanztomographie dargestellt und in die Neuronavigation integriert. Die biopsierten supratentoriellen Läsionen wiesen einen mittleren Durchmesser von 33 mm auf und lagen im Mittel 32 mm unter der Cortexoberfläche. Intraoperativ erfolgte eine Schnellschnittbefundung des Biopsats. Mit dieser Methode konnte in 56 der 57 Fälle (98 %) pathologisches Gewebe gewonnen werden. In zwei Fällen kam es zu einer bleibenden neurologischen Verschlechterung (Hemiparese, Gesichtsfelddefekt). Die mittlere Operationsdauer betrug 92 Minuten.
Diese Studie zeigt, dass die rahmenlose Stereotaxie unter Verwendung der intraoperativen Schnellschnittdiagnostik eine zuverlässige Methode zur Biopsie supratentorieller Läsionen mit einem Mindestdurchmesser von 15 mm darstellt und in der diagnostischen Sicherheit der klassischen rahmenbasierten Stereotaxie nicht nachsteht.

References

  • 1 Alberti O, Dorward N L, Kitchen N D, Thomas D G. Neuronavigation - impact on operating time.  Stereotact Funct Neurosurg. 1997;  68 44-48
  • 2 Apuzzo M L, Chandrasoma P T, Cohen D, Zee C S, Zelman V. Computed imaging stereotaxy: experience and perspective related to 500 procedures applied to brain masses.  Neurosurgery. 1987;  20 930-937
  • 3 Barnett G H, Miller D W, Weisenberger J. Frameless stereotaxy with scalp-applied fiducial markers for brain biopsy procedures: experience in 218 cases.  J Neurosurg. 1999;  91 569-576
  • 4 Bernays R L, Kollias S S, Khan N, Brandner S, Meier S, Yonekawa Y. Histological yield, complications, and technological considerations in 114 consecutive frameless stereotactic biopsy procedures aided by open intraoperative magnetic resonance imaging.  J Neurosurg. 2002;  97 354-362
  • 5 Blaauw G, Braakman R. Pitfalls in diagnostic stereotactic brain surgery.  Acta Neurochir Suppl. 1988;  42 161-165
  • 6 Brodwater B K, Roberts D W, Nakajima T, Friets E M, Strohbehn J W. Extracranial application of the frameless stereotactic operating microscope: experience with lumbar spine.  Neurosurgery. 1993;  32 209-213
  • 7 Bucholz R D, Greco D J. Image-guided surgical techniques for infections and trauma of the central nervous system.  Neurosurg Clin N Am. 1996;  7 187-200
  • 8 Chandrasoma P T, Smith M M, Apuzzo M L. Stereotactic biopsy in the diagnosis of brain masses: comparison of results of biopsy and resected surgical specimen.  Neurosurgery. 1989;  24 160-165
  • 9 Dorward N L, Paleologos T S, Alberti O, Thomas D G. The advantages of frameless stereotactic biopsy over frame- based biopsy.  Br J Neurosurg. 2002;  16 110-118
  • 10 Ganslandt O, Fahlbusch R, Nimsky C, Kober H, Moller M, Steinmeier R, Romstock J, Vieth J. Functional neuronavigation with magnetoencephalography: outcome in 50 patients with lesions around the motor cortex.  J Neurosurg. 1999;  91 73-79
  • 11 Germano I M, Queenan J V. Clinical experience with intracranial brain needle biopsy using frameless surgical navigation.  Comput Aided Surg. 1998;  3 33-39
  • 12 Golfinos J G, Fitzpatrick B C, Smith L R, Spetzler R F. Clinical use of a frameless stereotactic arm: results of 325 cases.  J Neurosurg. 1995;  83 197-205
  • 13 Gomez H, Barnett G H, Estes M L, Palmer J, Magdinec M. Stereotactic and computer-assisted neurosurgery at the Cleveland Clinic: review of 501 consecutive cases.  Cleve Clin J Med. 1993;  60 399-410
  • 14 Grunert P, Espinosa J, Busert C, Gunthner M, Filippi R, Farag S, Hopf N. Stereotactic biopsies guided by an optical navigation system: technique and clinical experience.  Minim Invasive Neurosurg. 2002;  45 11-15
  • 15 Gunkel A R, Freysinger W, Thumfart W F. Experience with various 3-dimensional navigation systems in head and neck surgery.  Arch Otolaryngol Head Neck Surg. 2000;  126 390-395
  • 16 Hassfeld S, Zoller J, Albert F K, Wirtz C R, Knauth M, Muhling J. Preoperative planning and intraoperative navigation in skull base surgery.  J Craniomaxillofac Surg. 1998;  26 220-225
  • 17 Heilbrun M P, McDonald P, Wiker C, Koehler S, Peters W. Stereotactic localization and guidance using a machine vision technique.  Stereotact Funct Neurosurg. 1992;  58 94-98
  • 18 Kaus M, Steinmeier R, Sporer T, Ganslandt O, Fahlbusch R. Technical accuracy of a neuronavigation system measured with a high-precision mechanical micromanipulator.  Neurosurgery. 1997;  41 1431-1437
  • 19 Kober H, Nimsky C, Moller M, Hastreiter P, Fahlbusch R, Ganslandt O. Correlation of sensorimotor activation with functional magnetic resonance imaging and magnetoencephalography in presurgical functional imaging: a spatial analysis.  Neuroimage. 2001;  14 1214-1228
  • 20 Lee T, Kenny B G, Hitchock E R, Teddy P J, Palividas H, Harkness W, Meyer C H. Supratentorial masses: stereotactic or freehand biopsy?.  Br J Neurosurg. 1991;  5 331-338
  • 21 Lunsford L D, Coffey R J, Cojocaru T, Leksell D. Image- guided stereotactic surgery: a 10-year evolutionary experience.  Stereotact Funct Neurosurg. 1990;  55 375-387
  • 22 Maciunas R J. Overview of interactive image-guided neurosurgery: Principles, applications, and new techniques. In: Alexander III E, Maciunas RJ (eds). Advanced neurosurgical navigation. Thieme, New York 1999; 15-32
  • 23 Maciunas R J, Galloway R L, Latimer J W. The application accuracy of stereotactic frames.  Neurosurgery. 1994;  35 682-695
  • 24 Nimsky C, Ganslandt O, Kober H, Moller M, Ulmer S, Tomandl B, Fahlbusch R. Integration of functional magnetic resonance imaging supported by magnetoencephalography in functional neuronavigation.  Neurosurgery. 1999;  44 1249-1255
  • 25 Olivier A, Germano I M, Cukiert A, Peters T. Frameless stereotaxy for surgery of the epilepsies: preliminary experience. Technical note.  J Neurosurg. 1994;  81 629-633
  • 26 Paleologos T S, Dorward N L, Wadley J P, Thomas D G. Clinical validation of true frameless stereotactic biopsy: analysis of the first 125 consecutive cases.  Neurosurgery. 2001;  49 830-837
  • 27 Raabe A, Krishnan R, Zimmermann M, Seifert V. Frame-less and frame-based stereotaxy? How to choose the appropriate procedure.  Zentralbl Neurochir. 2003;  64 1-5
  • 28 Roessler K, Ungersboeck K, Dietrich W, Aichholzer M, Hittmeir K, Matula C, Czech T, Koos W T. Frameless stereotactic guided neurosurgery: clinical experience with an infrared based pointer device navigation system.  Acta Neurochir. 1997;  139 551-559
  • 29 Selesnick S H, Kacker A. Image-guided surgical navigation in otology and neurotology.  Am J Otol. 1999;  20 688-693
  • 30 Steinmeier R, Rachinger J, Kaus M, Ganslandt O, Huk W, Fahlbusch R. Factors influencing the application accuracy of neuronavigation systems.  Stereotact Funct Neurosurg. 2000;  75 188-202
  • 31 Vinas F C, Zamorano L, Buciuc R, Li Q H, Shamsa F, Jiang Z, Diaz F G. Application accuracy study of a semipermanent fiducial system for frameless stereotaxis.  Comput Aided Surg. 1997;  2 257-263
  • 32 Wen D Y, Hall W A, Miller D A, Seljeskog E L, Maxwell R E. Targeted brain biopsy: a comparison of freehand computed tomography-guided and stereotactic techniques.  Neurosurgery. 1993;  32 407-413
  • 33 Winkler D, Trantakis C, Lindner D, Richter A, Schober J, Meixensberger J. Improving planning procedure in brain biopsy: coupling frame-based stereotaxy with navigational device STP 4.0.  Minim Invasive Neurosurg. 2003;  46 37-40
  • 34 Yu X, Liu Z, Tian Z, Li S, Huang H, Xiu B, Zhao Q, Liu L, Jing W. Stereotactic biopsy for intracranial space-occupying lesions: clinical analysis of 550 cases.  Stereotact Funct Neurosurg. 2000;  75 103-108

O. Ganslandt M. D. 

Department of Neurosurgery

University Erlangen-Nürnberg

Schwabachanlage 6

91054 Erlangen

Germany

Telefon: +49/91 31/85-3 30 01

Fax: +49/91 31/85-3 45 51

eMail: ganslandt@nch.imed.uni-erlangen.de