Geburtshilfe Frauenheilkd 2003; 63(12): 1256-1261
DOI: 10.1055/s-2003-44648
Originalarbeit

Georg Thieme Verlag Stuttgart · New York

Die dreidimensionale Zellkultur als experimentelles Modell zur Untersuchung angiogener Faktoren

Three-Dimensional Tissue Culture as an Experimental Model for the Evaluation of Angiogenic FactorsF. Pröls 1 , D. Heidgress 1 , J. Wilting 2 , G. Frank 1 , B. Christ 1
  • 1Anatomisches Institut II, Albert-Ludwigs-Universität Freiburg
  • 2Universitätsklinikum Göttingen, Kinderklinik und Poliklinik, Göttingen
Further Information

Publication History

Eingang Manuskript: 14. Mai 2003 Eingang revidiertes Manuskript: 18. September 2003

Akzeptiert: 19. September 2003

Publication Date:
26 November 2003 (online)

Zusammenfassung

Fragestellung und Methodik

Angiogenese, die Bildung von neuen Gefäßen aus bereits existierenden Kapillaren, findet unter physiologischen Bedingungen beim Erwachsenen selten statt. Einzig in weiblichen Geschlechtsorganen findet man während der fertilen Phase regelmäßig eine kontrollierte Angiogenese und zwar im Ovar während der Follikelreifung und der Bildung des Gelbkörpers, im Endometrium während des Menstruationszyklus und in der Plazenta und der wachsenden Brustdrüse während der Schwangerschaft. Die Ausbildung eines funktionierenden Gefäßnetzes ist für die Fertilität und auch für die Versorgung des wachsenden Embryos eine essenzielle Voraussetzung. Um im Bedarfsfall die Ausbildung des Gefäßnetzes verbessern zu können, ist die Kenntnis der wirkenden molekularen Mechanismen notwendig. Wir wissen heute, dass Angiogenese durch das Zusammenspiel verschiedener Faktoren (Wachstumsfaktoren, matrixdegradierende Proteasen, extrazelluläre Matrixproteine) kontrolliert wird. In dieser Arbeit stellen wir ein experimentelles System vor, das erlaubt, die Wirkung von Faktoren, einzeln und in Kombination, auf die terminale Differenzierung von lumenbildenden Endothelzellen zu untersuchen.

Schlussfolgerung

Der Vorteil des hier vorgestellten dreidimensionalen Zellkultursystems ist vor allem die Berücksichtigung der Funktion der extrazellulären Matrix zum einen als Zellgerüst, aber vor allen Dingen auch als Reservoir für Wachstumsfaktoren, die - je nach metabolischer Zellaktivität - freigesetzt werden und wiederum Zellmetabolismus und -physiologie regulieren.

Abstract

Purpose and Methods

Angiogenesis is the formation of new vessels from preexisting capillaries. Under physiological conditions angiogenesis is a rare event in the adult except in females during their reproductive period, where controlled angiogenesis occurs in the ovary during maturation of the follicle and formation of the corpus luteum and in the uterus during the endometrial secretory phase. During pregnancy angiogenesis occurs in the placenta and the growing mammary glands. Angiogenesis is essential for fertility and to ensure an adequate blood supply for the growing embryo. In order to improve angiogenesis it is essential to know the underlying molecular mechanisms. We know by now that angiogenesis is controlled by the concerted interaction of a variety of factors (e.g. growth factors, extracellular matrix proteins, and matrix proteases). Here, we present and metabolically characterize an experimental system that allows investigation of individual factors as well as their concerted interaction on the process of terminal cell differentiation.

Conclusion

By means of this three dimensional experimental system the function of the extracellular matrix, as it is understood today, is clearly mimicked. It serves as a cellular lattice on the one hand but also as a reservoir for growth factors that are sequestered and released according to the cellular metabolism.

Literatur

  • 1 Ancelin M, Buteau-Lozano H, Meduri G, Osborne-Pellegrin M, Sordello S, Plouet J, Perrot-Applanat M. A dynamic shift of VEGF isoforms with a transient and selective progesterone-induced expression of VEGF189 regulates angiogenesis and human uterus.  Proc Natl Acad Sci USA. 2002;  99 6023-6028
  • 2 Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.  Anal Biochem. 1987;  162 156-159
  • 3 Denhardt D T, Noda M, O'Regan A W, Pavlin D, Berman J S. Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival.  J Clin Invest. 2001;  107 1055-1061
  • 4 Drevs J, Unger C. Karzinomentstehung und Tumortherapie. Aktuelle Wertigkeit der Antiangiogenese.  Geburtsh Frauenheilk. 2001;  61 912-913
  • 5 Gargett C E, Rogers P AW. Human endometrial angiogenesis.  Reproduction. 2001;  121 181-186
  • 6 Gordon J D, Shifren J L, Foulk R A, Taylor R N, Jaffe R B. Angiogenesis in the human female reproductive tract.  Obstet Gynecol Surv. 1995;  50 688-697
  • 7 Ghosh D, Sharkey A M, Charnock-Jones D S, Dhawan L, Dhara S, Smith S K, Sengupta J. Expression of vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) in conceptus and endometrium during implantation in the rhesus monkey.  Mol Hum Reprod. 2000;  6 935-941
  • 8 Goppelt-Struebe M, Wiedemann T, Heusinger-Ribeiro J, Vucadinovic M, Rehm M, Prols F. Cox-2 and osteopontin in cocultured platelets and mesangial cells: role of glucocorticoids.  Kidney Int. 2000;  57 2229-2238
  • 9 Gudjonsson T, Ronnov-Jessen L, Villadsen R, Bissell M J, Petersen O W. To create the correct microenvironment: three-dimensional heterotypic collagen assays for human breast epithelial morphogenesis and neoplasia.  Methods. 2003;  30 247-255
  • 10 Houck K A, Ferrara N, Winer J, Cachianes G, Li B, Leung D W. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA.  Mol Endocrinol. 1991;  5 1806-1814
  • 11 Houck K A, Leung D W, Rowland A M, Winer J, Ferrara N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms.  J Biol Chem. 1992;  267 26031-26037
  • 12 Kayisli U A, Mahutte N G, Arici A. Uterine chemokines in reproductive physiology and pathology.  Am J Reprod Immunol. 2002;  47 213-221
  • 13 Khan S A, Lopez-Chua C A, Zhang J, Fiser L W, Sorensen E S, Denhardt D T. Soluble osteopontin inhibits apoptosis of adherent endothelial cells deprived of growth factors.  J Cell Biochem. 2002;  85 728-736
  • 14 Marx M, Perlmutter R A, Madri J A. Modulation of platelet-derived growth factor receptor expression in microvascular endothelial cells during in vitro angiogenesis.  J Clin Invest. 1994;  93 131-139
  • 15 Meduri G, Bausero P, Perrot-Applanat M. Expression of vascular endothelial growth factor receptors in the human endometrium: modulation during the menstrual cycle.  Biol Reprod. 2000;  62 439-447
  • 16 Mundhenke C, Maass N, Jonat W, Friedl A. FGF-2-Interaktionen in Mammakarzinomen und gesundem Brustdrüsengewebe.  Geburtsh Frauenheilk. 2002;  62 962-966
  • 17 Pepper M S, Vassalli J D, Orci L, Montesano R. Biphasic effect of transforming growth factor-beta 1 on in vitro angiogenesis.  Exp Cell Res. 1993;  204 356-363
  • 18 Peters K, Schmidt H, Unger R E, Otto M, Kamp G, Kirkpatrick C J. Software-supported image quantification of angiogenesis in an in vitro culture system: application to studies of biocompatibility.  Biomaterials. 2002;  23 3413-3419
  • 19 Plouet J, Moro F, Bertagnolli S, Coldeboeuf N, Marzagguil H, Clamens S, Bayard F. Extracellular cleavage of the vascular endothelial growth factor 189-amino acid form by urokinase is required for its mitogenic effect.  J Biol Chem. 1997;  272 13390-13396
  • 20 Pröls F, Loser B, Marx M. Differential expression of osteopontin, PC4, and CEC5, a novel mRNA species, during in vitro angiogenesis.  Exp Cell Res. 1998;  239 1-10
  • 21 Pröls F, Heidgress D, Rupprecht H D, Marx M. Regulation of osteopontin expression in rat mesangial cells.  FEBS Letters. 1998;  422 15-18
  • 22 Pröls F, Mayer M P, Renner O, Czarnecki P G, Ast M, Gässler C, Wilting J, Kurz H, Christ B. Upregulation of the cochaperone Mdg1 in endothelial cells is induced by stress and during in vitro angiogenesis.  Exp Cell Res. 2001;  269 42-53
  • 23 Racine-Samson L, Rockey D C, Bissell D M. The role of alpha1beta1 integrin in wound contraction. A quantitative analysis of liver myofibroblasts in vivo and in primary culture.  J Biol Chem. 1997;  272 30911-30917
  • 24 Sage E H. Regulation of interactions between cells and extracellular matrix: a command performance on several stages.  J Clin Invest. 2001;  107 781-783
  • 25 Steiner E, Hofmann M, Weikel W, Beck T, Brockerhoff P. Wiederholungsrisiko der Plazentainsuffizienz aus klinischer und morphologischer Sicht.  Geburtsh Frauenheilk. 2001;  61 285-289
  • 26 Sterzel R B, Lovett D H, Foellmer H G, Perfetto M, Biemesderfer and Kashgarian D M. Mesangial cell hillocks. Nodular foci of exaggerated growth of cells and matrix in prolonged culture.  Am J Pathol. 1986;  125 130-140
  • 27 Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes and Abraham J CJA. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing.  J Biol Chem. 1991;  266 11947-11954
  • 28 Weintraub A S, Giachelli C M, Krauss R S, Almeida M, Taubman M B. Autocrine secretion of osteopontin by vascular smooth muscle cells regulates their adhesion to collagen gels.  Am J Pathol. 1996;  149 259-272

Felicitas Pröls

Institut für Anatomie II
Albert-Ludwigs-Universität

Albertstraße 17

79104 Freiburg

Email: felicitas.proels@anat.uni-freiburg.de