Abstract
The influence of the auxin transport inhibitors naphthylphthalamic acid (NPA) and
methyl-2-chloro-9-hydroxyflurene-9-carboxylate (CF), as well as the gaseous hormone
ethylene on cambial differentiation of poplar was determined. NPA treatment induced
clustering of vessels and increased vessel length. CF caused a synchronized differentiation
of cambial cells into either vessel elements or fibres. The vessels in CF-treated
wood were significantly smaller and fibre area was increased compared with controls.
Under the influence of ethylene, the cambium produced more parenchyma, shorter fibres
and shorter vessels than in controls. Since poplar is the model tree for molecular
biology of wood formation, the modulation of the cambial differentiation of poplar
towards specific cell types opens an avenue to study genes important for the development
of vessels or fibres.
Key words
Populus
- poplar - xylem differentiation - auxin transport - NPA - morphactin - ethylene
References
- 1 Aloni R..
Physiology of trees. Raghavendra, A. S., ed. Wood Formation in Deciduous Hardwood Trees. New York; Wiley
and Sons (1991): 175-197
- 2 Aloni R..
The induction of vascular tissues by auxin and cytokinin. Davies, P. J., ed. Plant Hormones, 2nd edition. The Netherlands; Kluwer Academic
Publishers (1995): 531-546
- 3
Arend M., Weisenseel M. H., Brummer M., Osswald W., Fromm J..
Seasonal changes of plasma membrane H+-ATPase and endogenous ion current during cambial growth in poplar plants.
Plant Physiol..
(2002);
129
1651-1663
- 4 Berlyn G. P..
Morphogenetic factors in wood formation and differentiation. Baas, P., ed. New Perspectives in Wood Anatomy. The Hague; Martinus Nijhoff/Dr. W.
Junk Publishers (1982): 123-150
- 5 Davies J. P..
The plant hormones: Their nature, occurrence and functions. Davies, P. J., ed. Plant Hormones, 2nd edition. The Netherlands; Kluwer Academic
Publishers (1995): 1-5
- 6
Dünisch O., Bauch J., Sack M., Müller M..
Growth dynamics in wood formation in plantation-grown Swietenia macrophylla (King) and Carya guianensis (Aubl).
Mitt. Bundesforschungsanst. Forst. Holzwirtsch..
(1999);
193
79-96
- 7 Eklund L., Klintborg A..
Ethylene, oxygen and carbon dioxide in woody stems during growth and dormancy. Savidge, R. A., Barnett, J. R., and Napier, R., eds. Cell and Molecular Biology of
Wood Formation. Oxford, UK; Bios Scientific Publishers Ltd. (2000): 43-53
- 8
Eklund L., Little C. H. A..
Interaction between indole-3-acetic acid and ethylene in the control of tracheid production
in detached shoots of Abies balsamea.
.
Tree Physiol..
(1994);
15
27-34
- 9
Gälweiler L., Guan C., Müller A., Wisman E., Mendgen K., Yephremov A., Palme K..
Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue.
Science.
(1998);
282
2226-2230
- 10
Grünwald C., Deutsch F., Eckstein D., Fladung M..
Wood formation in rolC transgenic aspen trees.
Trees.
(2000);
14
297-304
- 11
Hertzberg M., Aspeborg H., Schrader J., Andersson A., Erlandsson R., Blomqvist K.,
Bhalerao R., Uhlen M., Teeri T. T., Lundeberg J., Sundberg B., Nilsson P., Sandberg G..
A transcriptional roadmap to wood formation.
Proc. Nat. Acad. Sci. USA.
(2001);
98
14732-14737
- 12 Hewitt E. J., Smith T. A.. Plant Mineral Nutrition. London; English Universities
Press Ltd. (1975): 298
- 13
Kalev N., Aloni R..
Role of auxin and gibberellin regenerative differentiation of tracheids in Pinus pinea L. seedlings.
New Phytol..
(1998);
138
461-468
- 14
Katekar G., Geissler A. E..
Auxin transport inhibitors. III Chemical requirements of a class of auxin transport
inhibitors.
Plant Physiol..
(1977);
60
826-829
- 15
Katekar G., Geissler A. E..
Auxin transport inhibitors.
Plant Physiol..
(1980);
66
1190-1195
- 16
Leplé J., Brasileiro A. C., Michel M. F., Delmotte F., Jouanin L..
Transgenic poplars: expression of chimeric genes using four different constructs.
Plant Cell Rep..
(1992);
11
137-141
- 17
Little C. H. A., Eklund L..
Ethylene in relation to compression wood formation in Abies balsamea shoots.
Trees.
(1999);
13
173-177
- 18
Mattsson J., Sung Z. R., Berleth T..
Responses of plant vascular systems to auxin transport inhibition.
Development.
(1999);
126
2979-2991
- 19
Morey P. R., Dahl B. E..
Histological and morphological effects of auxin transport inhibitors on honey mesquite.
Bot. Gaz..
(1975);
136
274-280
- 20
Phelps J. E., McGinnes E. A. J., Saniewski M., Pieniazek J., Smolinski M..
Some anatomical observations on the effect of Morphactin IT 3456 and ethrel on wood
formation in Salix fragilis L.
IAWA Bull..
(1980);
1
76-82
- 21
Roberts K., McCann M. C..
Xylogenesis. The birth of a corpse.
Curr. Opinion Plant Biol..
(2000);
3
517-522
- 22
Sachs T..
Cell polarity and tissue patterning in plants.
Development Suppl..
(1991);
91.1
83-93
- 23 Savidge R. A..
Biochemistry of seasonal cambial growth and wood formation - an overview of the challenges. Savidge, R. A., Barnett, J. R., and Napier, R., eds. Cell and Molecular Biology of
Wood Formation. Oxford, UK; Bios Scientific Publishers Ltd. (2000): 1-28
- 24
Shain L., Hillis W. E..
Ethylene production in xylem of Pinus radiata in relation to heartwod formation.
Can. J. Bot..
(1972);
51
1331-1335
- 25
Smolinski M., Saniewski M., Pieniazek J..
The suppression of tension wood formation in bent shoots of Aesculus hippocastanum L. by morphactin IT 3456.
Bull. Acad. Polon. Sci..
(1974);
22
809-812
- 26
Sundberg B., Tuominen H., Little A. C. H..
Effects of the indole-3-acetic acid (IAA) transport inhibitors N-1-naphthylphthalamic
acid and morphactin on endogenous IAA dynamics in relation to compression wood formation
in 1-year-old Pinus sylvestris (L.) shoots.
Plant Physiol..
(1994);
106
469-476
- 27
Sundberg B., Uggla C..
Origin and dynamics of indole-3-acetic acid under polar transport in Pinus sylvestris.
.
Physiol. Plant..
(1998);
104
22-29
- 28
Suttle J. C..
Effect of ethylene treatment on polar IAA transport, net IAA uptake and specific binding
of N-1-naphthylphthalamic acid in tissues and microsomes isolated from etiolated pea
epicotyls.
Plant Physiol..
(1988);
88
795-799
- 29
Teichmann T..
The biology of wood formation: scientific challenges and biotechnological perspectives.
Recent Res. Devel. Plant Physiol., Trivandrum, India: Research Signpost.
(2001);
2
269-284
- 30
Tuominen H., Puech L., Fink S., Sundberg B..
A radial concentration gradient of indole-3-acetic acid is related to secondary xylem
development in hybrid aspen.
Plant Physiol..
(1997);
115
577-585
- 31
Tuominen H., Sitbon F., Jacobsson C., Sandberg G., Olsson O., Sundberg B..
Altered growth and wood characteristics in transgenic hybrid aspen expressing Agrobacterium
tumefaciens T-DNA indolacetic acid biosynthetic genes.
Plant Physiol..
(1995);
109
1179-1189
- 32
Uggla C., Mellerowicz E., Sundberg B..
Indole-3-acetic acid controls cambial growth in Scots pine by positional signaling.
Plant Physiol..
(1998);
117
113-121
- 33
Uggla C., Moritz C., Sandberg G., Sundberg B..
Auxin as a positional signal in pattern formation in plants.
Proc. Natl. Acad. Sci. USA.
(1996);
93
9282-9286
- 34
Wareing P. F..
Interaction between IAA and GA in cambial activity.
Nature.
(1958);
181
1744-1745
- 35
Yamaguchi K., Itoh T..
The dam-up effect of morphactin in broad-leaved tree stems.
Holzforschung.
(1991);
45
297-302
- 36
Yamamoto F., Angeles G., Kozlowski T. T..
Effect of ethrel on stem anatomy of Ulmus americana seedlings.
IAWA Bull..
(1987);
8
3-9
- 37
Yamamoto F., Kozlowski T. T..
Effect of ethrel on growth and stem anatomy of Pinus halepensis seedlings.
IAWA Bull..
(1987);
8
11-19
T. Teichmann
Forstbotanisches Institut
Georg-August-Universität Göttingen
Büsgenweg 2
37077 Göttingen
Germany
Email: tteichm@gwdg.de
Section Editor: H. Rennenberg