References
1
Dwek RA.
Chem. Rev.
1996,
96:
683
2a
Banoub J.
Boullanger P.
Lafont D.
Chem. Rev.
1992,
92:
1167
2b
Debenham J.
Rodebaugh R.
Fraser-Reid B.
Liebigs Ann. Chem.
1997,
791
3a
Toshima K.
Tatsuta K.
Chem. Rev.
1993,
93:
1503
3b
Boons G.-J.
Tetrahedron
1996,
52:
1095
4
Kronzer FJ.
Schuerch C.
Carbohydr. Res.
1974,
34:
71
5
Schmidt RR.
Angew. Chem., Int. Ed. Engl.
1986,
5:
212
6
Ness RK.
Fletcher HG.
Hudson CS.
J. Am. Chem. Soc.
1950,
72:
2200
7
Schmid U.
Waldmann H.
Tetrahedron Lett.
1996,
37:
3837
8
Tanaka H.
Sakamoto H.
Sano A.
Nakamura S.
Nakajima M.
Hashimoto S.
Chem. Commun.
1999,
1259
9a
Ernst B.
Winkler T.
Tetrahedron Lett.
1989,
30:
3081
9b
Caputo R.
Kunz H.
Mastroianni D.
Palumbo G.
Pedatella S.
Solla F.
Eur. J. Org. Chem.
1999,
3147
10
Thiem J.
Meyer B.
Chem. Ber.
1980,
113:
3075
11a
Uchiyama T.
Hindsgaul O.
Synlett
1996,
499
11b
Miquel N.
Doisneau G.
Beau J.-M.
Chem. Commun.
2000,
2347
12
Gervay J.
Nguyen TN.
Hadd MJ.
Carbohydr. Res.
1997,
300:
119
13a
Gervay J.
Hadd MJ.
J. Org. Chem.
1997,
62:
6961
13b
Hadd MJ.
Gervay J.
Carbohydr. Res.
1999,
320:
61
13c
Bhat AS.
Gervay-Hague J.
Org. Lett.
2001,
3:
2081
13d
Lam SN.
Gervay-Hague J.
Org. Lett.
2002,
4:
2039
13e
Lam SN.
Gervay-Hague J.
Carbohydr. Res.
2002,
337:
1953
13f
Ying L.
Gervay-Hague J.
Carbohydr. Res.
2003,
338:
835
14a
Chervin SM.
Abada P.
Koreeda M.
Org. Lett.
2000,
2:
369
14b
Bickley JA.
Cottrell JR.
Ferguson J.
Field RA.
Harding JR.
Hughes DL.
Ravindranathan Kartha KP.
Law JL.
Scheinmann F.
Stachulski AV.
Chem. Commun.
2003,
1266
15
Ravindranathan Kartha KP.
Field RA.
Carbohydr. Lett.
1998,
3:
179
16
Lemieux RU.
Takeda T.
Chung BY.
ACS Symposium Series
1976,
39:
90
17
Aly MRE.
Castro-Palomino JC.
Ibrahim E.-SI.
El-Ashry E.-SH.
Schmidt RR.
Eur. J. Org. Chem.
1998,
2305
18
1H NMR (Bruker Avance 400, 400 MHz, CDCl3) for compound 4: δ = 6.56 (d, 1 H, J = 10.1 Hz, H-1), 5.55 (t, 1 H, J = 9.7 Hz, H-3), 5.21 (t, 1 H, J = 9.7 Hz, H-4), 4.44 (t, 1 H, H-2), 4.28 (dd, 1 H, J = 12.5 Hz, J = 4.7 Hz, H-6), 4.15 (dd, 1 H, J = 2.3 Hz, H-6′), 3.85 (ddd, 1 H, H-5), 2.14 (s, 3 H, Ac), 2.08 (s, 3 H, Ac), 2.02 (s, 3 H, Ac), 1.99 (s, 3 H, DMM), 1.91 (s, 3 H, DMM).
19
Medgyes A.
Farkas E.
Lipták A.
Pozsgay V.
Tetrahedron
1997,
53:
4159
20
1H NMR (Bruker Avance 400, 400 MHz, C6D6, 75 °C) for compound 6: δ = 7.65-7.01 (m, 4 H, Ar), 6.90 (d, 1 H, J = 10.0 Hz, H-1), 6.02 (t, 1 H, J = 9.7 Hz, H-3), 5.38 (t, 1 H, J = 9.7 Hz, H-4), 4.98 (t, 1 H, H-2), 4.27 (dd, 1 H, J = 12.4 Hz, J = 4.7 Hz, H-6), 4.08 (dd, 1 H, J = 2.0 Hz, H-6′), 3.49 (m, 1 H, H-5), 1.88 (s, 3 H, Ac), 1.83 (s, 3 H, Ac), 1.72 (s, 3 H, Ac).
21 To a solution of compound 1 and 2 (0.66 mmol, 1 equiv) in CH2Cl2 (3 mL) at 0 °C TMSI (1.1 equiv) was added under inert atmosphere. The reaction mixture was stirred at r.t. until disappearance of the starting material (about 30 min), then cooled to -78 °C. On the other hand, compound 3 (0.63 mmol, 1 equiv) was dissolved in toluene (3 mL) and TMSI (1.1 equiv) was added at 0 °C under inert atmosphere. The solution was stirred at 80 °C for 45 min, then the solvent was evaporated. The residue was dissolved in CH2Cl2 (3 mL) under inert atmosphere and the solution cooled at -78 °C. The nucleophile and the acidic promoter (when necessary, see text) were added, the solution was allowed to reach r.t. and stirred for 6-8 h. Standard workup and silica gel chromatography gave the β-glycoside. When silylated compound 2 was employed as starting material (entries 10-13 in Table
[1]
), MeOH was added after glycosylation to remove the trimethylsilyl groups. After stirring 20 min, the solvent was evaporated in vacuo and the crude residue was submitted to standard acetylation.
22
Postema MHD.
C-Glycoside Synthesis
CRC Press;
Boca Raton (FL):
1995.