References
1
Perron F.
Albizati KF.
Chem. Rev.
1989,
89:
1617
2
Fletcher MT.
Kitching W.
Chem. Rev.
1995,
95:
789
3
Francke W.
Kitching W.
Curr. Org. Chem.
2001,
5:
233
4
Boivin TLB.
Tetrahedron
1987,
43:
3309
5
Mead KT.
Brewer NB.
Curr. Org. Chem.
2003,
7:
227
6
Deslongchamps P.
Stereoelectronic Effects in Organic Chemistry
Pergamon;
Oxford:
1983.
For example:
7a
Hungerbuler E.
Naef R.
Wasmuth D.
Seebach D.
Helv. Chim. Acta
1980,
63:
1960
7b
Rosini G.
Ballini R.
Petrini M.
Marotta E.
Angew. Chem., Int. Ed. Engl.
1986,
25:
941
7c
Occhiato EG.
Scarpi D.
Menchi G.
Guarna A.
Tetrahedron: Asymmetry
1996,
7:
1929
7d
Occhiato EG.
Guarna A.
De Sarlo F.
Scarpi D.
Tetrahedron: Asymmetry
1995,
6:
2971
7e
Hirai K.
Ooi H.
Esumi T.
Iwabuchi Y.
Hatakeyama S.
Org. Lett.
2003,
6:
857
8
Slladie G.
Huser N.
Fisher J.
Decian A.
J. Org. Chem.
1995,
60:
4988
9
Miyakoshi N.
Mukai C.
Org. Lett.
2003,
6:
2335
10
Suenaga K.
Araki K.
Sengoku T.
Uemura D.
Org. Lett.
2001,
4:
527
11 Partial result has been published in: Wu Z.-H.
Wang J.
Li J.-C.
X Y.-Z.
Yu A.-L.
Feng Z.-R.
Shen J.
Wu Y.-L.
Guo P.-F.
Wang Y.-N.
Natl. Prod. Res. Dev. (China)
1994,
6:
1
12a
Hegnauer R. In Chemotaxonomie der Pflanzen
Vol.3:
Birkhauser Verlag;
Basel:
1964.
p.447
12b
Bohlmann F.
Burkhardt T.
Zdero C.
Naturally Occurring Acetylenes
Academic Press;
London:
1973.
12c
Greger H. In The Biology and Chemistry of Compositae
Heywood VH.
Harborne JB.
Turner BL.
Academic Press;
London:
1977.
Chap. 32.
12d
Bohlmann F. In Chemistry and Biology of Naturally Occurring Acetylenes and Related Compounds
Lam J.
Bretler H.
Anason T.
Hansen L.
Elsvier;
Amsterdam:
1988.
p.1
12e
Zdero C.
Bohlmann F.
Plant Syst. Evol.
1990,
171:
1
13
Christensen LP.
Phytochemistry
1992,
31:
7
14a
Bohlmann F.
Jastrow H.
Ertringshausen G.
Kramer D.
Chem. Ber.
1964,
97:
801
14b
Bohlmann F.
Florentz G.
Chem. Ber.
1966,
99:
990
14c
Bohlmann F.
Diedrich B.
Gordon W.
Fanghänel L.
Schneider J.
Tetrahedron Lett.
1965,
1385
15a
Gao Y.
Wu W.-L.
Ye B.
Zhou R.
Wu Y.-L.
Tetrahedron Lett.
1996,
37:
893
15b
Gao Y.
Wu W.-L.
Wu Y.-L.
Ye B.
Zhou R.
Tetrahedron
1998,
54:
12523
16
Fan J.-F.
Zhang Y.-F.
Wu Y.
Wu Y.-L.
Chin. J. Chem.
2001,
19:
1254
17
Fan J.-F.
Yin B.-L.
Zhang Y.-F.
Wu Y.-L.
Wu Y.
Huaxue Xuebao
2001,
59:
1756
18
Yin B.-L.
Yang Z.-M.
Hu T.-S.
Wu Y.-L.
Synthesis
2003,
1995
19
Typical Procedure of Acid Catalyzed Sipoketalization for Synthesis of Compound 11a: A mixture of 9a (1.16 g, 5 mmol), (1R, 2R)-(-)-pseudoephedrine (0.83 g, 5 mmol), MeOH (20 mL) and Et3N (10 mL) was refluxed under nitrogen for 24 h. Removal of the solvents under reduced pressure gave a yellow oily crude product amide. Without further purification the oil was solved in anhyd CH2Cl2 (20 mL) and to the obtained solution was added CSA (20 mg). The reaction mixture was stirred at r.t. until the disappearance of all the starting material (ca. 24 h) and then quenched with sat. aq NaHCO3. The aqueous layer was extracted with CH2Cl2 and the combined organic layers were washed with brine and dried over Na2SO4. Removal of solvent gave the crude spiroketal, which was purified by flash chromatography to yield compound 11a (1.58 g, 91%): mp 162-163 °C, [α]D
20 +345.2 (c 1.0, CHCl3). IR (KBr): 3101, 1674, 1658, 1490, 1450, 1243, 1009, 925, 746, 693 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.47-7.13 (10 H, m), 6.50 (1 H, d, J = 5.5 Hz), 6.19 (1 H, d, J = 5.5 Hz), 5.50 (1 H, s), 4.81 (1 H, d, J = 5.8 Hz), 4.17 (1 H, m), 3.15 (3 H, s), 1.37 (3 H, d, J = 6.7 Hz). MS: m/z (%) = 347 (17.0) [M+], 256 (2.1), 173 (12.5), 172 (79.0), 128 (10.0), 118 (100.0), 117 (34.6), 116 (10.7), 115 (12.8). HRMS: m/z calcd for C22H21O3N: 347.1516. Found: 347.1509.
20 For a recent review on aromatic interactions in organic synthesis, see: Jones GB.
Tetrahedron
2001,
57:
7999 ; and references cited therein
For examples of aromatic interactions in molecular recognition, see:
21a
Inouye M.
Itoh MS.
Nakazumi H.
J. Org. Chem.
1999,
64:
9393
21b
Ponzini F.
Zagha R.
Hardcastle K.
Siegel JS.
Angew. Chem. Int. Ed.
2000,
39:
2323
For examples in biology, see:
22a
Quan RW.
Li Z.
Jacobsen EN.
J. Am. Chem. Soc.
1996,
118:
8156
22b
Wedemayer GJ.
Patten PA.
Wang LH.
Schultz PG.
Stevens RC.
Science
1997,
276:
1665
23
Typical Procedure of Acid Catalyzed Sipoketalization for Synthesis of Compound 20 and 21: To a solution of 19 (1.2 g, 3.48 mmol) in 15 mL of CH2Cl2 was added catalytic amount of CSA (40 mg). The reaction mixture was stirred at r.t. for 24 h, and the separated aqueous phase was extracted with CH2Cl2, and the combined organic layers were washed with brine and dried over Na2SO4 After removal of the solvent, the residue was chromatographed to afford 20 (828 mg, 72.7%) and 21 (230 mg, 20.2%). Compound 20: mp 142-143 °C. IR (film): 3180, 2974, 1656, 1492, 1352, 1237, 1097, 1014, 747, 690 cm-1. 1H NMR (300 MHz, CDCl3):
δ = 7.60 (2 H, d, J = 7.4 Hz), 7.27 (2 H, m), 7.15 (1 H, m), 6.51 (1 H, d, J = 5.7 Hz), 6.07 (1 H, dd, J = 0.9 Hz, 5.7 Hz), 5.52 (1 H, s), 4.19 (1 H, ddd, J = 3.3 Hz, 6.9 Hz, 11.1 Hz), 3.63-3.37 (3 H, m), 3.28 (1 H, dd, J = 3.3 Hz, 12.3 Hz), 1.85 (1 H, m), 1.22 (3 H, t, J = 7.5 Hz), 0.99 (6 H, t, J = 5.7 Hz). MS: m/z (%) = 313 (31.8) [M+], 173 (27.5), 172 (100.0), 144 (19.8), 128 (16.0) Anal. Calcd for C19H23NO3: C, 72.82; H, 7.40; N, 4.47. Found: C, 72.99; H, 7.62; N, 4.31.
Compound 21: syrup. IR (film): 3086, 2964, 2935, 1669, 1597, 1491, 1352, 1238, 825, 690 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.58 (2 H, d, J = 7.5 Hz), 7.26 (2 H, m), 7.16 (1 H, m), 6.47 (1 H, d, J = 5.7 Hz), 6.22 (1 H, d, J = 5.7 Hz), 5.50 (1 H, s), 3.85 (2 H, m), 3.52 (2 H, dq, J = 1.8 Hz, 7.2 Hz), 3.34 (1 H, dd, J = 1.8 Hz, 10.8 Hz), 1.94 (1 H, m), 1.21 (3 H, t, J = 7.2 Hz), 1.02 (3 H, d, J = 7.2 Hz), 0.96 (3 H, d, J = 7.2 Hz). MS: m/z (%) = 313 (38.3) [M+], 173 (26.0), 172 (100.0), 144 (22.1), 128 (12.9), 116 (17.0), 115 (22.1). Anal. Calcd for C19H23NO3: C, 72.82; H, 7.40; N, 4.47. Found: C, 72.69; H, 7.46; N, 4.41.