References
1 Stereoselective Synthesis of Steroids and Related Compounds, part VII. For part VI see: Groth U.
Richter N.
Kalogerakis A.
Eur. J. Org. Chem.
2003,
23:
4634
2a
Comprehensive Natural Products Chemistry
Vol. 8:
Elsevier Science Ltd.;
Amsterdam:
1999.
p.108-136
2b
Ernst M.
Helmchen G.
Angew. Chem. Int. Ed.
2002,
41:
4054 ; Angew. Chem. 2002, 114, 4231
2c
Helmchen G.
Gocke A.
Lauer G.
Urmann M.
Angew. Chem., Int. Ed. Engl.
1990,
29:
1024 ; Angew. Chem. 1990, 102, 1079(3)
3a
Oppolzer W.
Cunningham F.
Tetrahedron Lett.
1986,
26:
5467
3b
Mash EA.
J. Org. Chem.
1987,
52:
4142
3c
Lawler DM.
Simpkins NS.
Tetrahedron Lett.
1988,
29:
1207
3d
Suzuki T.
Tada H.
Unno K.
J. Chem. Soc., Perkin Trans. 1
1992,
2017
3e
Groth U.
Halfbrodt W.
Köhler T.
Kreye P.
Liebigs Ann. Chem.
1994,
885
3f
Urban E.
Knühl G.
Helmchen G.
Tetrahedron
1995,
51:
13031
4
Helmchen G.
Ihrig K.
Schindler H.
Tetrahedron Lett.
1987,
28:
183
5a
Fürstner A.
Müller T.
Synlett
1997,
1010
5b
Fürstner A.
Langenmann K.
J. Org. Chem.
1996,
61:
8746
5c
The Total Synthesis of Natural Products
Vol. 11:
John Wiley & Sons, Inc.;
New York:
1994.
p.172-173
5d Dactylol is a bicyclic sesquiterpene, which can be synthesized starting from a 2,3-disubstituted cyclopentanone.
6a
Quinkert G.
Müller T.
Königer A.
Schultheis O.
Sickenberger B.
Dürner G.
Tetrahedron Lett.
1992,
33:
3469
6b
The Total Synthesis of Natural Products
Vol. 11:
John Wiley & Sons, Inc.;
New York:
1994.
p.148-150
6c Confertin can also be synthesized from a 2,3-disubstituted cyclopentanone.
7a
Noyori R.
Suzuki M.
Angew. Chem. Int. Ed. Engl.
1984,
23:
847 ; Angew. Chem. 1984, 96, 854
7b
Steglich W.
Fugmann B.
Lang-Fugmann S.
RÖMPP Natural Products
Thieme;
Stuttgart:
2000.
p.517-518
8a
Wiechert R.
Angew. Chem. Int. Ed. Engl.
1970,
9:
321 ; Angew. Chem. 1970, 82, 331
8b
Wiechert R.
Angew. Chem. Int. Ed. Engl.
1970,
16:
506 ; Angew. Chem. 1977, 89, 513
8c
Quinkert G.
Stark H.
Angew. Chem. Int. Ed. Engl.
1983,
22:
637 ; Angew. Chem. 1983, 95, 651
8d
Steglich W.
Fugmann B.
Lang-Fugmann S.
RÖMPP Natural Products
Thieme;
Stuttgart:
2000.
p.608-611
9a
Yamamoto Y. In Houben-Weyl, Methods of Organic Chemistry
Vol. E 21b:
Thieme;
Stuttgart:
1995.
p.2041-2155
9b
Urban E.
Knühl G.
Helmchen G.
Tetrahedron
1996,
52:
971
9c
Kanai M.
Tomioka K.
Tetrahedron Lett.
1994,
35:
895
9d
Hailes HC.
Isaac B.
Javaid MH.
Tetrahedron Lett.
2001,
42:
7325
9e
Denmark SE.
Kim J.-O.
J. Org. Chem.
1995,
60:
7535
9f
Hanessian S.
Gomtsyan A.
Malek N.
J. Org. Chem.
2000,
65:
5623
9g
Hua DH.
Chan-Yu-King R.
McKie JA.
Myer L.
J. Am. Chem. Soc.
1987,
109:
5026
9h
Barnhart RW.
Wang X.
Noheda P.
Bergens SH.
Whelan J.
Bosnich B.
J. Am. Chem. Soc.
1994,
116:
1821
9i
Barnhart RW.
McMorran DA.
Bosnich B.
Chem. Commun.
1997,
589
9j
Moritani Y.
Appella DH.
Jurkauskas V.
Buchwald SL.
J. Am. Chem. Soc.
2000,
122:
6797
9k
Liang L.
Au-Yeung TT.-L.
Chan ASC.
Org. Lett.
2002,
4:
3799
10a
Nugent WA.
Hobbs FW.
J. Org. Chem.
1983,
48:
5364
10b
Nugent WA.
Hobbs FW.
Org. Synth.
1988,
66:
52
10c
Tietze LF.
Beifuss U.
Angew. Chem., Int. Ed. Engl.
1993,
32:
131 ; Angew. Chem. 1993, 105, 137
10d
Rossiter BE.
Swingle NM.
Chem. Rev.
1992,
92:
771
11a
Groth U.
Köhler T.
Taapken T.
Tetrahedron
1991,
47:
7583
11b
Groth U.
Huhn T.
Richter N.
Liebigs Ann. Chem.
1993,
49
11c
Groth U.
Köhler T.
Taapken T.
Liebigs Ann. Chem.
1994,
665
11d
Groth U.
Taapken T.
Liebigs Ann. Chem.
1994,
669
12
Sumitomo H.
Kobayashi K.
Saiji T.
J. Polym. Sci.
1972,
10:
3421
13a
Ort O.
Org. Synth.
1987,
65:
203
13b
Scharf H.-D.
Buschmann H.
Synthesis
1988,
827 ; and references cited therein
14
Oppolzer W.
Moretti R.
Godel T.
Meunier A.
Löher H.
Tetrahedron Lett.
1983,
24:
4971
15a
Lipshutz BH.
Synlett
1990,
119
15b
Lipshutz BH.
Org. React.
1992,
41:
135
16 Vinyllithium was prepared via reaction of tetravinyltin with n-BuLi.
17
Experimental Procedure: A solution of 10.0 mmol organolithium compound in Et2O (10 mL) was added to a solution of 5.0 mmol copper(I) cyanide in Et2O (10 mL)at
-80 °C. After 2 h stirring 5.0 mmol BF3·Et2O were added and the resultant mixture was cooled at -95 °C. A solution of 1.0 mmol chiral enoate 5 in Et2O (10 mL) was added via canulla and the obtained mixture was allowed to warm under stirring to r.t. (18 h). The reaction mixture was quenched with aq sat. NH4Cl solution (30 mL), extracted with Et2O (2 × 20 mL), the combined organic layer dried over MgSO4 and evaporated in vacuum. Purification of the residue by flash chromatography provided the 2,3-substituted cyclopentanone 7.
Analytical data of selected compounds (Figure
[1]
).
Compound 7e: Rf 0.41 (Et2O-petroleum ether, 1:5). IR(film): 3040 (alkene CH), 1740 (C=O), 1725 (OC=O), 1650 (alkene C=C), 1610 (arom. C=C) cm-1. 1H NMR (250 MHz, CDCl3): δ = 0.87 (d, 3
J = 6.5 Hz, 1 H, H-5′), 1.19 (s, 3 H, CH3), 1.27 (s, 3 H, CH3), 0.80-1.84 (m, 7 H, H-1′, H-3′, H-4′, H-6′), 1.88-2.40 (m, 3 H, H-4, H-5, H-2′), 3.46 (d,
3
J = 11 Hz, 1 H, H-2), 2.83-3.05 (m, 1 H, H-3), 4.81 (ddd,
3
J = 10.5, 10.5, 4 Hz, 1 H, COOCH, H-1′), 5.09 (ddd, J
cis
= 10 Hz, J = 1.5, 1.5 Hz, 1 H, CH=CH2), 5.125 (ddd, J
trans
= 17 Hz, J = 1.5, 1.5 Hz, 1 H, CH=CH2), 5.745 (ddd, J
trans
= 17 Hz, J
cis
= 10 Hz, J = 7 Hz, 1 H, CH=CH2), 7.06-7.20 (m, 1 H, arom. H), 7.23-7.38 (m, 4 H, arom. H). 13C NMR (62.5 MHz, CDCl3): δ = 21.74 [22.75] (CH3), 25.68 (CH3), 26.58 (cyclopentane-CH2), [26.43] 26.65 (cyclohexane-CH2), 27.37 [27.51] (CH3), [29.52] 31.28 (CHCH3, C-5′), 34.52 [34.68] (cyclohexane-CH2), 37.79 [38.25] (cyclopentane-CH2), 39.70 [39.87] (C(CH3)2), 41.38 [41.73] (cyclohexane-CH2), 43.73 [46.20] (CHCH=CH2, C-3), 49.96 [50.48] (C-2¢), 60.90 [62.07] (COCHCO, C-2), 75.96 [76.30] (C-1′), 115.78 [116.24] (CH = CH2), 124.87 [125.18], 125.45 [125.56], [127.84] 127.97 (3 × C-arom.), 138.62 [140.67] (CH=CH2), 151.51 (C-arom.), 167.34 [168.13] (COO), 210.22 (CO) (signals of the 2R,3S-configured diastereomer in brackets). EI-MS (70 eV): m/z (100) = 119 [PhC(CH3)2] (100), 249 (4) [M+ - PhC(CH3)2)], 368 (2) [M+]. Anal. Calcd for C24H32O3 (368.5): C, 78.22; H, 8.75. Found: C, 78.39; H, 8.85.
Compound 7f (Table 1, entry 11): Rf 0.46 (Et2O-petroleum ether, 1:1); mp: 59-63 °C. IR(nujol): 3060, 3040 (arom. CH), 1750 (C=O), 1730 (OC=O), 1640 (C=C), 1610, 1595 (arom. C=C), 1350, 1165 (CSO2N) cm-1. 1H NMR (250 MHz, CDCl3): δ = 0.82 (s, 3 H, CH3), 0.88 (s, 3 H, C-1-CH3), 1.04 (s, 3 H, CH3), 0.90-2.45 (m, 9 H, CH, CH2), 2.02 (s, 3 H, arom. CH3), 2.32 (s, 3 H, arom. CH3), 3.33 (d, J
trans
= 11.2 Hz, 1 H, H-2′), 3.34-3.50 (m, 1 H, H-3′), 4.25 (ddd, J = 8.8 Hz, J = 3.4 Hz, 4
J = 1.0 Hz, 1 H, H-3), 5.11 (ddd, J
cis = 10.6 Hz, 2
J = 1.2 Hz, 4
J = 1.2 Hz, 1 H, CH=CH2), 5.27 (ddd, J
trans
= 17.0 Hz, 2
J = 1.2 Hz, 4
J = 1.2 Hz, 1 H, CH=CH2), 5.46 (d, J = 8.8 Hz, 1 H, H-2), 5.78 (s, 1 H, arom. H), 5.98 (ddd, J
trans
= 17.0 Hz, J
cis
= 10.6 Hz, J = 6.6 Hz, 1 H, CH=CH2), 6.83 (s, 1 H, arom. H), 7.11 (s, 1 H, arom. H), 7.28-7.57 (m, 5 H, arom. H). 13C NMR (62.5 MHz, CDCl3): δ = 14.30 (C-10), 19.41 (C-8), 19.51 (C-9), 19.69 (C-5), 20.98, 21.29 (2 × arom. CCH3), 26.59 (C-6), 26.62 (C-4′), 38.13 (C-5′), [35.53] 43.46 (C-3′), 45.71 (C-7), 49.38 (C-4), 51.30 (C-1), 59.35 (C-3), 60.77 [63.27] (C-2′), 77.59 (C-2), 115.38 (CH=CH2), 127.49, 128.12, 129.33, 129.89, 132.46 (arom. C), 138.64 (CH=CH2), 136.98, 137.05, 138.16, 139.04 (arom. C), 167.88 (CHCOO), 210.70 [212.35] (C=O) (signals of the 2′R,3′S-configured diastereomer in brackets). EI-MS (70 eV): m/z (%) = 549 (3) [M+], 395(11) [M+ - C8H10O3], 254 (100) [M+ - C8H10O3 - SO2C6H5], 105 (22) [C8H9
+]. Anal. Calcd for C32H39O5NS (549.7): C, 69.92; H, 7.15. Found: C, 69.87; H, 7.28.
Compound 8e (Table 2, entry 5): Rf 0.31 (Et2O-petroleum ether, 1:2). [α]D
20 +82.3 (c 1.5, CHCl3). Bp. 65-70 °C (2 torr). IR(film): 3065 (alkene CH), 1750 (C=O), 1730 (OC=O), 1635 (C=C) cm-1. 1H NMR (250 MHz, CDCl3):
δ = 1.54-1.86 (m, 1 H, CH), 2.16-2.60 (m, 3 H, CH, CH2), 3.03 (dd, 3
J = 11.6 Hz, 4
J = 0.6 Hz, 1 H, C-2-H), 3.14-3.29 (m, 1 H, C-3-H), 3.76 (s, 3 H, OCH3), 5.10 (ddd, 3
J
cis = 10.0 Hz, 2
J = 1.2 Hz, 4
J = 1.2 Hz, 1 H, CH=CH2), 5.17 (ddd,
3
J
trans
= 17.0 Hz, 2
J = 1.2 Hz, 4
J = 1.2 Hz, 1 H, CH=CH2), 5.84 (ddd, 3
J
trans
= 17.0 Hz, 3
J
cis
= 10.0 Hz, 3
J = 6.6 Hz, 1 H, CH=CH2). 13C NMR (62.5 MHz, CDCl3): δ = 27.25 (C-4), 38.12 (C-5), 44.83 (C-3), 52.48 (OCH3), 60.77 (C-2), 115.95 (CH=CH2), 135.95 (CH=CH2), 169.10 (COOCH3), 210.71 (C-1). EI-MS (70 eV): m/z (%) = 168 (86) [M+], 137 (85) [M+ - OCH3], 109 (90) [M+ - COOCH3], 81 (100) [M+ - C2H3O2 - C2H3 - H]. HRMS: m/z calcd for C9H12O3 (168.2): 168.0786; found: 168.0786.
Compound 10e (Table 2, entry 5): Rf 0.41 (Et2O-petroleum ether, 1:10). [α]D
20 +3.3 (c 1.4, CHCl3). IR(film): 3065 (alkene CH), 1635 (C=C) cm-1. 1H NMR (250 MHz, CDCl3): δ = 1.21-1.27 (m, 6 H, CH3), 1.31-2.08 (m, 6 H, CH2), 2.46-2.74 (m, 1 H, CHCH=CH2), 3.47-3.66 (m, 2 H, OCH), 4.91 (ddd, 3
J
cis = 10.0 Hz, 2
J = 1.5 Hz, 4
J = 1.5 Hz, 1 H, CH=CH2), 5.00 (ddd, 3
J
trans
= 17.2 Hz, 2
J = 1.5 Hz, 4
J = 1.5 Hz, 1 H, CH=CH2), 5.79 (ddd, 3
J
trans
= 17.2 Hz, 3
J
cis
= 10.0 Hz, 3
J = 7.2 Hz, 1 H, CH=CH2). 13C NMR (62.5 MHz, CDCl3): δ = 16.86 (CH3), 16.95 (CH3), 30.57, 37.98 (CH2), 42.16 (C-7), 44.43 (CH2), 78.21 (CHCH3), 78.26 (CHCH3), 113.07 (CH=CH2), 116.84 (OCO), 141.98 (CH=CH2). EI-MS (70 eV): m/z (%) = 182 (3) [M+], 114 (100) [C6H10O2
+], 54 (26) [C4H8
+]. Anal. Calcd for C11H18O2 (182.3): C, 72.49; H, 9.95. Found: C, 72.36; H, 9.84.
18
Marx JN.
Norman LR.
J. Org. Chem.
1975,
40:
1602
19a For 9b (R = Ph): [α]D
20 = +83.4 (c 0.3, CHCl3).
19b
Taber DF.
Raman K.
J. Am. Chem. Soc.
1983,
105:
5935
19c
Taura Y.
Tanaka M.
Wu X.-M.
Funakoshi K.
Sakai K.
Tetrahedron
1991,
47:
4879
20 For 9c (R = t-Bu): [α]D
20 = +134.8 (c 1.13, CHCl3); ref.19b
21
Hiemstra H.
Wynberg H.
Tetrahedron Lett.
1977,
25:
2183
22a
Parish EJ.
Mody NV.
Hedin PA.
Miles DH.
J. Org. Chem.
1974,
39:
1592
22b
Huang B.-S.
Parish EJ.
Miles DH.
J. Org. Chem.
1974,
39:
2647