Antidepressant drug therapy is characterized by a high rate of therapeutic failure. There is increasing evidence that genetic factors are contributing to the inter-individual variability in antidepressant drug response. Genetic variability is described in both the pharmacokinetic part of drug action as well as in pharmacodynamic structures mediating drug effects. Genetic polymorphisms in drug metabolizing enzymes are well characterized and have large effects on oral clearances or elimination half-lives of antidepressant drugs. These differences can be compensated by adapting the individual dose to genotype in addition to other factors such as gender, weight, age, liver and kidney function. On the part of drug action, genetic variability is described in molecular structures of antidepressant effects. Several studies on response of antidepressants have revealed influences of polymorphisms in neurotransmitter receptors and transporters changing sensitivity of patients to treatment with antidepressants; however, results were often contradictory. A pharmacogenomic approach to individualize antidepressant drug treatment is recommended to be based on several levels: 1) identifying and validating the candidate genes involved in drug-response; 2) providing therapeutic guidelines; and 3) developing a pharmacogenetic test-system for bedside-genotyping.
Key words
Major depressive disorder - antidepressants - pharmacogenetics - pharmacokinetics - cytochrome p450 enzyme - lab-on-a-chip - individualized medicine
References
-
1 Wittchen H. Epidemiology of affective disorders. in H. Helmchen, F. Henn, H. Lauter and N. Sartorius Contemporary Psychiatry. Springer Heidelberg; 231-241
-
2
Mueller T I, Leon A C, Keller M B, Solomon D A, Endicott J, Coryell W, Warshaw M, Maser J D.
Recurrence after recovery from major depressive disorder during 15 years of observational follow-up.
Am J Psychiatry.
1999;
156
1000-6
-
3
Bauer M, Whybrow P C, Angst J, Versiani M, Möller H J.
World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Unipolar Depressive Disorders, Part 1: Acute and continuation treatment of major depressive disorder.
World J Biol Psychiatry.
2002;
3
5-43
-
4
Nelson J C.
Managing treatment-resistant major depression.
J Clin Psychiatry.
2003;
64 Suppl 1
5-12
-
5
Evans W E, McLeod H L.
Pharmacogenomics-drug disposition, drug targets, and side effects.
N Engl J Med.
2003;
348
538-49
-
6
Bertilsson L, Dahl M L, Dalen P, Al-Shurbaji A.
Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs.
Br J Clin Pharmacol.
2002;
53
111-22
-
7
Kirchheiner J, Brøsen K, Dahl M L, Gram L F, Kasper S, Roots I, Sjöqvist F, Spina E, Brockmöller J.
CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages.
Acta Psychiatr Scand.
2001;
104
173-92
-
8
Serretti A, Lilli R, Smeraldi E.
Pharmacogenetics in affective disorders.
Eur J Pharmacol.
2002;
438
117-28
-
9
Bertilsson L, Eichelbaum M, Mellström B, Säwe J, Schulz H U, Sjöqvist F.
Nortriptyline and antipyrine clearance in relation to debrisoquine hydroxylation in man.
Life Sci.
1980;
27
1673-7
-
10
Bertilsson L, Åberg Wistedt A.
The debrisoquine hydroxylation test predicts steady-state plasma levels of desipramine.
Br J Clin Pharmacol.
1983;
15
388-90
-
11
Baumann P, Jonzier Perey M, Koeb L, Küpfer A, Tinguely D, Schopf J.
Amitriptyline pharmacokinetics and clinical response: II. Metabolic polymorphism assessed by hydroxylation of debrisoquine and mephenytoin.
Int Clin Psychopharmacol.
1986;
1
102-12
-
12
Mellström B, Bertilsson L, Lou Y C, Säwe J, Sjöqvist F.
Amitriptyline metabolism: relationship to polymorphic debrisoquine hydroxylation.
Clin Pharmacol Ther.
1983;
34
516-20
-
13
Mellström B, Säwe J, Bertilsson L, Sjöqvist F.
Amitriptyline metabolism: association with debrisoquin hydroxylation in nonsmokers.
Clin Pharmacol Ther.
1986;
39
369-71
-
14
Balant Gorgia A E, Schulz P, Dayer P, Balant L, Kubli A, Gertsch C, Garrone G.
Role of oxidation polymorphism on blood and urine concentrations of amitriptyline and its metabolites in man.
Arch Psychiatr Nervenkr.
1982;
232
215-22
-
15
DUA G.
Clomipramine dose-effect study in patients with depression: Clinical end points and pharmacokinetics.
Clin Pharmacol Ther.
1999;
66
152-165
-
16
Nielsen K K, Brøsen K, Gram L F.
Steady-state plasma levels of clomipramine and its metabolites: impact of the sparteine/debrisoquine oxidation polymorphism. Danish University Antidepressant Group.
Eur J Clin Pharmacol.
1992;
43
405-11
-
17
Nielsen K K, Brøsen K, Hansen M G, Gram L F.
Single-dose kinetics of clomipramine: relationship to the sparteine and S-mephenytoin oxidation polymorphisms.
Clin Pharmacol Ther.
1994;
55
518-27
-
18
Steiner E, Alvan G, Garle M, Maguire J H, Lind M, Nilson S O, Tomson T, McClanahan J S, Sjoqvist F.
The debrisoquin hydroxylation phenotype does not predict the metabolism of phenytoin.
Clin Pharmacol Ther.
1987;
42
326-33
-
19
Spina E, Steiner E, Ericsson O, Sjöqvist F.
Hydroxylation of desmethylimipramine: dependence on the debrisoquin hydroxylation phenotype.
Clin Pharmacol Ther.
1987;
41
314-9
-
20
Brøsen K, Otton S V, Gram L F.
Imipramine demethylation and hydroxylation: impact of the sparteine oxidation phenotype.
Clin Pharmacol Ther.
1986;
40
543-9
-
21
Spina E, Gitto C, Avenoso A, Campo G M, Caputi A P, Perucca E.
Relationship between plasma desipramine levels, CYP2D6 phenotype and clinical response to desipramine: a prospective study.
Eur J Clin Pharmacol.
1997;
51
395-8
-
22
Brøsen K, Klysner R, Gram L F, Otton S V, Bech P, Bertilsson L.
Steady-state concentrations of imipramine and its metabolites in relation to the sparteine/debrisoquine polymorphism.
Eur J Clin Pharmacol.
1986;
30
679-84
-
23
Dahl M L, Bertilsson L, Nordin C.
Steady-state plasma levels of nortriptyline and its 10-hydroxy metabolite: relationship to the CYP2D6 genotype.
Psychopharmacology Berl.
1996;
123
315-9
-
24
Dalén P, Dahl M L, Ruiz M L, Nordin J, Bertilsson L.
10-Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes.
Clin Pharmacol Ther.
1998;
63
444-52
-
25
Mellström B, Bertilsson L, Säwe J, Schulz H U, Sjöqvist F.
E- and Z-10-hydroxylation of nortriptyline: relationship to polymorphic debrisoquine hydroxylation.
Clin Pharmacol Ther.
1981;
30
189-93
-
26
Kirchheiner J, Meineke I, Müller G, Roots I, Brockmöller J.
Contributions of CYP2D6, CYP2C9 and CYP2C19 to the biotransformation of E- and Z-doxepin in healthy volunteers.
Pharmacogenetics.
2002;
12
571-80
-
27
Kirchheiner J, Müller G, Meineke I, Wernecke K, Roots I, Brockmöller J.
Effects of polymorphisms in CYP2D6, CYP2C9 and CYP2C19 on trimipramine pharmacokinetics.
J Clin Psychopharmacol.
2003;
23
459-66
-
28
Eap C B, Bender S, Gastpar M, Fischer W, Haarmann C, Powell K, Jonzier Perey M, Cochard N, Baumann P.
Steady state plasma levels of the enantiomers of trimipramine and of its metabolites in CYP2D6-, CYP2C19- and CYP3A4/5-phenotyped patients.
Ther Drug Monit.
2000;
22
209-14
-
29
Lam Y W, Gaedigk A, Ereshefsky L, Alfaro C L, Simpson J.
CYP2D6 inhibition by selective serotonin reuptake inhibitors: analysis of achievable steady-state plasma concentrations and the effect of ultrarapid metabolism at CYP2D6.
Pharmacotherapy.
2002;
22
1001-6
-
30
Laine K, Tybring G, Härtter S, Andersson K, Svensson J O, Widen J, Bertilsson L.
Inhibition of cytochrome P4502D6 activity with paroxetine normalizes the ultrarapid metabolizer phenotype as measured by nortriptyline pharmacokinetics and the debrisoquin test.
Clin Pharmacol Ther.
2001;
70
327-35
-
31
Spigset O, Granberg K, Hagg S, Norström A, Dahlqvist R.
Relationship between fluvoxamine pharmacokinetics and CYP2D6/CYP2C19 phenotype polymorphisms.
Eur J Clin Pharmacol.
1997;
52
129-33
-
32
Carrillo J A, Dahl M L, Svensson J O, Alm C, Rodriguez I, Bertilsson L.
Disposition of fluvoxamine in humans is determined by the polymorphic CYP2D6 and also by the CYP1A2 activity.
Clin Pharmacol Ther.
1996;
60
183-90
-
33
Spigset O, Granberg K, Hagg S, Söderström E, Dahlqvist R.
Non-linear fluvoxamine disposition.
Br J Clin Pharmacol.
1998;
45
257-63
-
34
Eap C B, Bondolfi G, Zullino D, Savary-Cosendai L, Powell-Golay K, Kosel M, Baumann P.
Concentrations of the enantiomers of fluoxetine and norfluoxetine after multiple doses of fluoxetine in cytochrome P4502D6 poor and extensive metabolizers.
J Clin Psychopharmacol.
2001;
21
330-4
-
35
Fuller R W, Snoddy H D, Krushinski J H, Robertson D W.
Comparison of norfluoxetine enantiomers as serotonin uptake inhibitors in vivo.
Neuropharmacology.
1992;
31
997-1000
-
36
Sindrup S H, Brøsen K, Gram L F.
Pharmacokinetics of the selective serotonin reuptake inhibitor paroxetine: nonlinearity and relation to the sparteine oxidation polymorphism.
Clin Pharmacol Ther.
1992;
51
288-95
-
37
Pollock B G, Sweet R A, Kirshner M, Reynolds C F, 3rd.
Bupropion plasma levels and CYP2D6 phenotype.
Ther Drug Monit.
1996;
18
581-5
-
38
Kirchheiner J, Klein C, Meineke I, Sasse J, Zanger U, Mürdter T, Roots I, Brockmöller J.
Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6.
Pharmacogenetics.
2003;
13
616-26
-
39
Gabris G, Baumann P, Janzier-perey M, P B, Woggon B, Küpfer A.
N-methylation of maprotiline in debrisoquine/ mephenytoin-phenotyped depressive patients.
Biochemical Pharmacology.
1985;
34
409-410
-
40
Firkusny L, Gleiter C H.
Maprotiline metabolism appears to co-segregate with the genetically-determined CYP2D6 polymorphic hydroxylation of debrisoquine.
Br J Clin Pharmacol.
1994;
37
383-8
-
41
Faucette S R, Hawke R L, Lecluyse E L, Shord S S, Yan B, Laethem R M, Lindley C M.
Validation of bupropion hydroxylation as a selective marker of human cytochrome P450 2B6 catalytic activity.
Drug Metab Dispos.
2000;
28
1222-30
-
42
Barbhaiya R H, Buch A B, Greene D S.
Single and multiple dose pharmacokinetics of nefazodone in subjects classified as extensive and poor metabolizers of dextromethorphan.
Br J Clin Pharmacol.
1996;
42
573-81
-
43
Dostert P, Benedetti M S, Poggesi I.
Review of the pharmacokinetics and metabolism of reboxetine, a selective noradrenaline reuptake inhibitor.
Eur Neuropsychopharmacol.
1997;
7 Suppl 1
S23-35; discussion S71 - 3
-
44
Schoerlin M P, Blouin R A, Pfefen J P, Guentert T W.
Comparison of the pharmacokinetics of moclobemide in poor and efficient metabolizers of debrisoquine.
Acta Psychiatr Scand Suppl.
1990;
360
98-100
-
45
Härtter S, Dingemanse J, Baier D, Ziegler G, Hiemke C.
The role of cytochrome P450 2D6 in the metabolism of moclobemide.
Eur Neuropsychopharmacol.
1996;
6
225-30
-
46
Gram L F, Guentert T W, Grange S, Vistisen K, Brøsen K.
Moclobemide, a substrate of CYP2C19 and an inhibitor of CYP2C19, CYP2D6, and CYP1A2: a panel study.
Clin Pharmacol Ther.
1995;
57
670-7
-
47
Mihara K, Otani K, Suzuki A, Yasui N, Nakano H, Meng X, Ohkubo T, Nagasaki T, Kaneko S, Tsuchida S, Sugawara K, Gonzalez F J.
Relationship between the CYP2D6 genotype and the steady-state plasma concentrations of trazodone and its active metabolite m-chlorophenylpiperazine.
Psychopharmacology Berl.
1997;
133
95-8
-
48
Otton S V, Ball S E, Cheung S W, Inaba T, Rudolph R L, Sellers E M.
Venlafaxine oxidation in vitro is catalysed by CYP2D6.
Br J Clin Pharmacol.
1996;
41
149-56
-
49
Fukuda T, Yamamoto I, Nishida Y, Zhou Q, Ohno M, Takada K, Azuma J.
Effect of the CYP2D6*10 genotype on venlafaxine pharmacokinetics in healthy adult volunteers.
Br J Clin Pharmacol.
1999;
47
450-3
-
50
Veefkind A H, Haffmans P M, Hoencamp E.
Venlafaxine serum levels and CYP2D6 genotype.
Ther Drug Monit.
2000;
22
202-8
-
51
Lessard E, Yessine M, Hamelin B, O'Hara G, LeBlanc J, Turgeon J.
Influence of CYP2D6 activity on the disposition and cardiovascular toxicity of the antidepressant agent venlafaxine in humans.
Pharmacogenetics.
1999;
9
435-443
-
52
Shimoda K, Someya T, Yokono A, Morita S, Hirokane G, Takahashi S, Okawa M.
The impact of CYP2C19 and CYP2D6 genotypes on metabolism of amitriptyline in Japanese psychiatric patients.
J Clin Psychopharmacol.
2002;
22
371-8
-
53
Jiang Z P, Shu Y, Chen X P, Huang S L, Zhu R H, Wang W, He N, Zhou H H.
The role of CYP2C19 in amitriptyline N-demethylation in Chinese subjects.
Eur J Clin Pharmacol.
2002;
58
109-13
-
54
Yokono A, Morita S, Someya T, Hirokane G, Okawa M, Shimoda K.
The effect of CYP2C19 and CYP2D6 genotypes on the metabolism of clomipramine in Japanese psychiatric patients.
J Clin Psychopharmacol.
2001;
21
549-55
-
55
Skjelbo E, Brøsen K, Hallas J, Gram L F.
The mephenytoin oxidation polymorphism is partially responsible for the N-demethylation of imipramine.
Clin Pharmacol Ther.
1991;
49
18-23
-
56
Morinobu S, Tanaka T, Kawakatsu S, Totsuka S, Koyama E, Chiba K, Ishizaki T, Kubota T.
Effects of genetic defects in the CYP2C19 gene on the N-demethylation of imipramine, and clinical outcome of imipramine therapy.
Psychiatry Clin Neurosci.
1997;
51
253-7
-
57
Koyama E, Tanaka T, Chiba K, Kawakatsu S, Morinobu S, Totsuka S, Ishizaki T.
Steady-state plasma concentrations of imipramine and desipramine in relation to S-mephenytoin 4′-hydroxylation status in Japanese depressive patients.
J Clin Psychopharmacol.
1996;
16
286-93
-
58
Wang J H, Liu Z Q, Wang W, Chen X P, Shu Y, He N, Zhou H H.
Pharmacokinetics of sertraline in relation to genetic polymorphism of CYP2C19.
Clin Pharmacol Ther.
2001;
70
42-7
-
59
Sindrup S H, Brøsen K, Hansen M G, Aaes Jorgensen T, Overo K F, Gram L F.
Pharmacokinetics of citalopram in relation to the sparteine and the mephenytoin oxidation polymorphisms.
Ther Drug Monit.
1993;
15
11-7
-
60
Kidd R S, Curry T B, Gallagher S, Edeki T, Blaisdell J, Goldstein J A.
Identification of a null allele of CYP2C9 in an African-American exhibiting toxicity to phenytoin.
Pharmacogenetics.
2001;
11
803-8
-
61
Lee C R, Goldstein J A, Pieper J A.
Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data.
Pharmacogenetics.
2002;
12
251-63
-
62
Brockmöller J, Kirchheiner J, Meisel C, Roots I.
Pharmacogenetic diagnostics of cytochrome P450 polymorphisms in clinical drug development and in drug treatment.
Pharmacogenomics.
2000;
1
125-51
-
63
Kirchheiner J, Bauer S, Meineke I, Rohde W, Prang V, Meisel C, Roots I, Brockmöller J.
Impact of CYP2C9 and CYP2C19 polymorphisms on tolbutamide kinetics and on the insulin and glucose response in healthy volunteers.
Pharmacogenetics.
2002;
12
101-109
-
64
Müller M J, Dragicevic A, Fric M, Gaertner I, Grasmader K, Härtter S, Hermann E, Kuss H J, Laux G, Oehl W, Rao M L, Rollmann N, Weigmann H, Weber-Labonte M, Hiemke C.
Therapeutic drug monitoring of tricyclic antidepressants: how does it work under clinical conditions?.
Pharmacopsychiatry.
2003;
36
98-104
-
65
Lesch K P, Bengel D, Heils A, Sabol S Z, Greenberg B D, Petri S, Benjamin J, Muller C R, Hamer D H, Murphy D L.
Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region.
Science.
1996;
274
1527-31
-
66
Heils A, Teufel A, Petri S, Stober G, Riederer P, Bengel D, Lesch K P.
Allelic variation of human serotonin transporter gene expression.
J Neurochem.
1996;
66
2621-4
-
67
Whale R, Quested D J, Laver D, Harrison P J, Cowen P J.
Serotonin transporter (5-HTT) promoter genotype may influence the prolactin response to clomipramine.
Psychopharmacology (Berl).
2000;
150
120-2
-
68
Ozdemir V, Kalow W, Okey A B, Lam M S, Albers L J, Reist C, Fourie J, Posner P, Collins E J, Roy R.
Treatment-resistance to clozapine in association with ultrarapid CYP1A2 activity and the C- > A polymorphism in intron 1 of the CYP1A2 gene: effect of grapefruit juice and low-dose fluvoxamine.
J Clin Psychopharmacol.
2001;
21
603-7
-
69
Rausch J L, Johnson M E, Fei Y J, Li J Q, Shendarkar N, Hobby H M, Ganapathy V, Leibach F H.
Initial conditions of serotonin transporter kinetics and genotype: influence on SSRI treatment trial outcome.
Biol Psychiatry.
2002;
51
723-32
-
70
Yu Y W, Tsai S J, Chen T J, Lin C H, Hong C J.
Association study of the serotonin transporter promoter polymorphism and symptomatology and antidepressant response in major depressive disorders.
Mol Psychiatry.
2002;
7
1115-9
-
71
Smeraldi E, Zanardi R, Benedetti F, Di Bella D, Perez J, Catalano M.
Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine.
Mol Psychiatry.
1998;
3
508-11
-
72
Zanardi R, Serretti A, Rossini D, Franchini L, Cusin C, Lattuada E, Dotoli D, Smeraldi E.
Factors affecting fluvoxamine antidepressant activity: influence of pindolol and 5-HTTLPR in delusional and nondelusional depression.
Biol Psychiatry.
2001;
50
323-30
-
73
Pollock B G, Ferrell R E, Mulsant B H, Mazumdar S, Miller M, Sweet R A, Davis S, Kirshner M A, Houck P R, Stack J A, Reynolds C F, Kupfer D J.
Allelic variation in the serotonin transporter promoter affects onset of paroxetine treatment response in late-life depression.
Neuropsychopharmacology.
2000;
23
587-90
-
74
Zanardi R, Benedetti F, Di Bella D, Catalano M, Smeraldi E.
Efficacy of paroxetine in depression is influenced by a functional polymorphism within the promoter of the serotonin transporter gene.
J Clin Psychopharmacol.
2000;
20
105-7
-
75
Benedetti F, Serretti A, Colombo C, Campori E, Barbini B, di Bella D, Smeraldi E.
Influence of a functional polymorphism within the promoter of the serotonin transporter gene on the effects of total sleep deprivation in bipolar depression.
Am J Psychiatry.
1999;
156
1450-2
-
76
Minov C, Baghai T C, Schule C, Zwanzger P, Schwarz M J, Zill P, Rupprecht R, Bondy B.
Serotonin-2A-receptor and -transporter polymorphisms: lack of association in patients with major depression.
Neurosci Lett.
2001;
303
119-22
-
77
Sato K, Yoshida K, Takahashi H, Ito K, Kamata M, Higuchi H, Shimizu T, Itoh K, Inoue K, Tezuka T, Suzuki T, Ohkubo T, Sugawara K, Otani K.
Association between -1438G/A promoter polymorphism in the 5-HT(2A) receptor gene and fluvoxamine response in Japanese patients with major depressive disorder.
Neuropsychobiology.
2002;
46
136-40
-
78
Serretti A, Zanardi R, Rossini D, Cusin C, Lilli R, Smeraldi E.
Influence of tryptophan hydroxylase and serotonin transporter genes on fluvoxamine antidepressant activity.
Mol Psychiatry.
2001;
6
586-92
-
79
Serretti A, Zanardi R, Cusin C, Rossini D, Lorenzi C, Smeraldi E.
Tryptophan hydroxylase gene associated with paroxetine antidepressant activity.
Eur Neuropsychopharmacol.
2001;
11
375-80
-
80
Jonsson E G, Goldman D, Spurlock G, Gustavsson J P, Nielsen D A, Linnoila M, Owen M J, Sedvall G C.
Tryptophan hydroxylase and catechol-O-methyltransferase gene polymorphisms: relationships to monoamine metabolite concentrations in CSF of healthy volunteers.
Eur Arch Psychiatry Clin Neurosci.
1997;
247
297-302
-
81
Gorman J , Sullivan G.
Noradrenergic approaches to antidepressant therapy.
J Clin Psychiatry.
2000;
61 Suppl 1
13-6
-
82
Baghai T C, Schule C, Zwanzger P, Minov C, Schwarz M J, de Jonge S, Rupprecht R, Bondy B.
Possible influence of the insertion/deletion polymorphism in the angiotensin I-converting enzyme gene on therapeutic outcome in affective disorders.
Mol Psychiatry.
2001;
6
258-9
-
83
Hong C J, Wang Y C, Tsai S J.
Association study of angiotensin I-converting enzyme polymorphism and symptomatology and antidepressant response in major depressive disorders.
J Neural Transm.
2002;
109
1209-14
-
84
Zill P, Baghai T C, Zwanzger P, Schule C, Minov C, Riedel M, Neumeier K, Rupprecht R, Bondy B.
Evidence for an association between a G-protein beta3-gene variant with depression and response to antidepressant treatment.
Neuroreport.
2000;
11
1893-7
-
85
Naber C K, Husing J, Wolfhard U, Erbel R, Siffert W.
Interaction of the ACE D allele and the GNB3 825T allele in myocardial infarction.
Hypertension.
2000;
36
986-9
-
86
Bondy B, Baghai T C, Zill P, Bottlender R, Jaeger M, Minov C, Schule C, Zwanzger P, Rupprecht R, Engel R R.
Combined action of the ACE D- and the G-protein beta3 T-allele in major depression: a possible link to cardiovascular disease?.
Mol Psychiatry.
2002;
7
1120-6
-
87
Verpoorte E.
Microfluidic chips for clinical and forensic analysis.
Electrophoresis .
2002;
23
677-712
-
88 Perch-Nielsen I R, Poulsen C R, El-Ali J, Bang D D, Wolff A. Removal of PCR inhibitors using dielectrophoresis as sample preparation in a microfabricated system. In preparation 2003
-
89 Poulsen C R, El-Ali J, Perch-Nielsen I R, Bang D D, Wolff A. Detection of a putative virulence cadF gene of Campylobacter jejuni isolates from different sources using a microfabricated PCR chip. In preparation 2003
Tian
H
J
Huhmer
A
FR
Landers
J
P
Evaluation of silica resins for direct and efficient extraction of DNA from complex biological matrices in a miniaturized format
Analytical Biochemistry
2000
283
175
191
Wilding
P
Shoffner
M
A
Kricka
L
J
Pcr in a Silicon Microstructure
Clinical Chemistry
1994
40
1815
1818
Kopp
M
U
de Mello
A
J
Manz
A
Chemical amplification: Continuous-flow PCR on a chip
Science
1998
280
1046
1048
Northrup
M
A
Benett
B
Hadley
D
Landre
P
Lehew
S
Richards
J
Stratton
P
A miniature analytical instrument for nucleic acids based on micromachined silicon reaction chambers
Analytical Chemistry
1998
70
918
922
Mello
A
Jd
DNA amplification: does ‘small’ really mean ‘efficient’?
Lab on a Chip
2002
1
24N
29N
Pastinen
T
Kurg
A
Metspalu
A
Peltonen
L
Syvänen
A
C
Minisequencing: a specific tool for DNA analysis and diagnostics on oligonucleotide arrays
Genome Res
1997
7
606
14
Liljedahl
U
Karlsson
J
Melhus
H
Kurland
L
Lindersson
M
Kahan
T
Nystrom
F
Lind
L
Syvanen
A
C
A microarray minisequencing system for pharmacogenetic profiling of antihypertensive drug response
Pharmacogenetics
2003
13
7
17
Steiner
E
Spina
E
Differences in the inhibitory effect of cimetidine on desipramine metabolism between rapid and slow debrisoquin hydroxylators
Clin Pharmacol Ther
1987
42
278
82
Bergmann
T
K
Bathum
L
Brøsen
K
Duplication of CYP2D6 predicts high clearance of desipramine but high clearance does not predict duplication of CYP2D6
Eur J Clin Pharmacol
2001
57
123
7
Suzuki
A
Otani
K
Mihara
K
Yasui
N
Kaneko
S
Inoue
Y
Hayashi
K
Effects of the CYP2D6 genotype on the steady-state plasma concentrations of haloperidol and reduced haloperidol in Japanese schizophrenic patients
Pharmacogenetics
1997
7
415
8
Yue
Q
Y
Zhong
Z
H
Tybring
G
Dalén
P
Dahl
M
L
Bertilsson
L
Sjöqvist
F
Pharmacokinetics of nortriptyline and its 10-hydroxy metabolite in Chinese subjects of different CYP2D6 genotypes
Clin Pharmacol Ther
1998
64
384
90
Morita
S
Shimoda
K
Someya
T
Yoshimura
Y
Kamijima
K
Kato
N
Steady-state plasma levels of nortriptyline and its hydroxylated metabolites in Japanese patients: impact of CYP2D6 genotype on the hydroxylation of nortriptyline
J Clin Psychopharmacol
2000
20
141
9
Fjordside
Jeppesen
U
Eap
C
B
Powell
K
Baumann
P
Brøsen
K
The stereoselective metabolism of fluoxetine in poor and extensive metabolizers of sparteine
Pharmacogenetics
1999
9
55
60
Hamelin
B
A
Turgeon
J
Vallee
F
Belanger
P
M
Paquet
F
LeBel
M
The disposition of fluoxetine but not sertraline is altered in poor metabolizers of debrisoquin
Clin Pharmacol Ther
1996
60
512
21
Sindrup
S
H
Brøsen
K
Gram
L
F
Hallas
J
Skjelbo
E
Allen
A
Allen
G
D
Cooper
S
M
Mellows
G
Tasker
T
C
et al
The relationship between paroxetine and the sparteine oxidation polymorphism
Clin Pharmacol Ther
1992
51
278
87
Mihara
K
Otani
K
Tybring
G
Dahl
M
L
Bertilsson
L
Kaneko
S
The CYP2D6 genotype and plasma concentrations of mianserin enantiomers in relation to therapeutic response to mianserin in depressed Japanese patients
J Clin Psychopharmacol
1997
17
467
71
Dahl
M
L
Tybring
G
Elwin
C
E
Alm
C
Andreasson
K
Gyllenpalm
M
Bertilsson
L
Stereoselective disposition of mianserin is related to debrisoquin hydroxylation polymorphism
Clin Pharmacol Ther
1994
56
176
83
Eap
C
B
Lima
C
A
Macciardi
F
Woggon
B
Powell
K
Baumann
P
Steady state concentrations of the enantiomers of mianserin and desmethylmianserin in poor and in homozygous and heterozygous extensive metabolizers of debrisoquine
Ther Drug Monit
1998
20
7
13
Dahl
M
L
Voortman
G
Alm
C
Elwin
C
E
Delbressine
L
Vos
R
Bogaards
J
JP
Bertilsson
L
In vitro and in vivo studies on the disposition of mirtazapine in humans
Clin Drug Invest
1997
13
37
46
Eap
C
B
Lessard
E
Baumann
P
Brawand-Amey
M
Yessine
M
A
O'Hara
G
Turgeon
J
Role of CYP2D6 in the stereoselective disposition of venlafaxine in humans
Pharmacogenetics
2003
13
39
47
Kirchheiner
J
Nickchen
K
Bauer
M
Licinio
J
Wong
M
-L
Roots
I
Brockmöller
J
Therapeutic implications from pharmacoenetics in antidepressant and antipsychotic drug therapy
Mol Psychiatry
2004 (in press)
Dr. Julia Kirchheiner
Institute of Clinical Pharmacology
Charité-University Medicine Berlin
Campus Charité-Mitte (CCM)
Schumannstr. 20/21
10117 Berlin, Germany
Telefon: +49-30-450-525233
Fax: +49-30-450-525926
eMail: julia.kirchheiner@charite.de