Aktuelle Ernährungsmedizin 2003; 28(6): 363-370
DOI: 10.1055/s-2003-45376
Originalbeitrag
© Georg Thieme Verlag Stuttgart · New York

In Vivo Determination of Oxidative Stress

In-vivo-Messung von oxidativem StressB.  Wirleitner1 , K.  Schröcksnadel1 , C.  Winkler1 , B.  Frick1 , D.  Fuchs1
  • 1Institute for Medical Chemistry and Biochemistry, University of Innsbruck, and Ludwig Boltzmann Institute for AIDS-Research, Innsbruck, Österreich
1. This work was supported by the Austrian Science Foundation „zur Förderung der wissenschaftlichen Forschung” (Grant P14154-MED)2. Manuskript nach einem Vortrag bei dem 21. Gemeinsamen Kongress von AKE, DGEM und GESKES Nutrition 2003 in Linz vom 12. - 14.6.2003
Further Information

Publication History

Publication Date:
16 December 2003 (online)

Zusammenfassung

Sauerstoff ist für eukaryontische Zellen essenziell für die Energieproduktion. Ein Leben in einer aeroben Umgebung bedeutet aber auch eine ständige Konfrontation mit reaktiven Sauerstoffverbindungen, die z. B. als Nebenprodukte des aeroben Stoffwechsels entstehen. Sauerstoffradikale werden ebenfalls im Rahmen von Immunaktivierungsvorgängen durch immunkompetente Zellen massiv freigesetzt und können Schäden an Zellstrukturen verursachen. Die hauptsächlichen Ziele der Radikale sind hierbei Enzyme, Zellmembrane sowie die DNS. Oxidativer Stress entsteht, wenn eine zu große Bildung von Sauerstoffradikalen einem zu geringen Pool an Antioxidantien gegenübersteht. Die Entdeckung, dass oxidativer Stress eine wichtige Rolle in der Pathogenese einer großen Reihe von Erkrankungen spielt, hat die Erforschung dieser Vorgänge in den Fokus des Interesses gesetzt. Unterschiedliche Methoden wurden entwickelt, um oxidativen Stress in vivo zu quantifizieren, wie die Messungen von Oxidationsprodukten bei der Lipidperoxidation, oxydierte Proteine oder DNS. Alternativ dazu ist die Evaluierung des Verbrauchs von Antioxidantien. Diese Zusammenfassung gibt einen Überblick über verschiedener Methoden zur Quantifizierung von oxidativem Stress in vivo.

Abstract

Oxygen is required by eukaryotic cells for energy production. Living in an aerobic environment brings with the exposure of cells to reactive oxygen species (ROS). ROS for example accumulate as byproducts of the aerobic metabolism, and a substantial endogenous generation of ROS occurs during immune response by immunocompetent cells. Massive occurrence of ROS results in oxidative damage of cellular components. The primary targets of ROS are enzymes, cell membranes, and DNA. Oxidative stress is defined by an overwhelming occurrence of ROS opposed by an exhausted pool of antioxidants. In the last decade, the role of oxidative stress in the pathogenesis of a wide range of human diseases became obvious, and determination of the phenomenon of oxidative stress moved into the focus of interest. Several approaches were developed to quantify this condition. Among them are measurements of oxidation products such as lipid peroxidation, oxidized protein, or DNA. Alternatively, oxidative stress can be determined by the loss of antioxidants. This review briefly summarizes current available methods for the quantification of oxidative stress in vivo.

References

  • 1 Hurst J K, Barette W C. Leukocyte oxygen activation and microbicidal oxidative toxins.  Crit Rev Biochem Mol Biol. 1989;  24 271-328
  • 2 Kohen R, Nydka A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification.  Toxicol Pathol. 2002;  30 620-650
  • 3 Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence?.  Lancet. 1984;  344 721-724
  • 4 Powis G, Briehl M, Oblong J. Redox signalling and the control of cell growth and death.  Pharmac Ther. 1995;  65 149-173
  • 5 Davies K J. Protein damage and degradation of oxygen radicals. I. General aspects.  J Biol Chem. 1987;  262 9895-9901
  • 6 Halliwell B, Gutteridge J MC. Free radicals in biology and medicine. 2nd ed. Oxford; Clarendon Press 1990
  • 7 Beckman K B, Ames B N. Oxidative decay of DNA.  J Biol Chem. 1997;  272 19633-19636
  • 8 Esterbauer H, Schaur R J, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes.  Free Radic Biol Med. 1991;  11 81-128
  • 9 Bird R P, Draper H H. Comparative studies on different methods of malondialdehyde determination.  Methods Enzymol. 1984;  105 299-305
  • 10 Marnett L F, Tuttle M A. Comparison of the mutagenicities of malondialdehyde and the side products formed during its chemical synthesis.  Cancer Res. 1980;  40 276-282
  • 11 Benzie I F. Lipid peroxidation: a review of causes, consequences, measurement and dietary influences.  Int J Fodd Sci Nutr. 1996;  47 233-261
  • 12 Dib M, Garrel C, Favie A, Robin V, Desnuelle C. Can malondialdehyde be used as a biological marker of progression in neurodegenerative disease?.  J Neurol. 2002;  249 367-374
  • 13 Valles J, Aznar J, Santos M T, Fernandez M A. Elevated lipid peroxide levels in platelets of chronic ischemic heart disease patients.  Thromb Res. 1882;  27 585-589
  • 14 Roberts L J, Morrow J D. Measurement of F2-isoprostanes as an index of oxidative stress in vivo.  Free Radic Biol Med. 2000;  28 505-513
  • 15 Praticò D. F2-isoprostanes, sensitive and specific non-invasive indices of lipid peroxidation in vivo.  Atherosclerosis. 1999;  147 1-10
  • 16 Patrono C, FitzGerald G A. Isoprostanes: potential markers of oxidant stress in atherothrombotic disease.  Arterioscler Thromb Vasc Biol. 1997;  17 2309-2315
  • 17 Jiang Z Y, Hunt J V, Wolff S P. Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in lowdensity lipoprotein.  Anal Biochem. 1992;  202 384-389
  • 18 Davies M F, Fu S, Wang H, Dean R T. Stable markers of oxidant damage to proteins and their application in the study of human disease.  Free Radic Biol Med. 1999;  27 1151-1163
  • 19 Beckman J S, Koppenol W H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly.  Am J Physiol. 1996;  271 C1424-1437
  • 20 Halliwell B. Reactive oxygen species and the central nervous system.  J Neurochem. 1992;  59 1609-1623
  • 21 Good P F, Hsu A, Werner P, Perl D P, Oanow C W. Protein nitration in Parkinson's disease.  J Neuropathol Exp Neurol. 1998;  57 338-342
  • 22 Shigenaga M K, Gimeno C J, Ames B N. Urinary 8-hydroxy-2'-deoxyguanosine as a biomarker of in vivo oxidative DNA damage.  Proc Natl Acad Sci USA. 1989;  86 9697-9701
  • 23 Iiada T, Furuta A, Kawashima M, Nishida J, Nakabeppu Y, Iwaki T. Accumulation of 8-oxo-2'-deoxyguanosine and increased expression of hMTH1 protein in brain tumors.  Neurooncol. 2001;  3 73-81
  • 24 Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues.  Anal Biochem. 1969;  27 502-522
  • 25 Brigelius R, Muckel C, Akerboom T P, Sies H. Identification and quantitation of glutathione in hepatic protein mixed disulfides and its relationship to glutathione disulfide.  Biochem Pharmacol. 1983;  32 2529-2534
  • 26 Reed D J, Babson J R, Beatty P W, Brodie A E, Ellis W W, Potter D W. High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulfide, and related thiols and disulfides.  Anal Biochem. 1980;  106 55-62
  • 27 Newton G L, Dorian R, Fahey R C. Analysis of biological thiols: derivatization with monobromobimane and separation by reverse phase high-performance liquid chromatography.  Anal Biochem. 1981;  114 383-387
  • 28 Samiec P S, Drews-Botsch F, Flagg E W, Kurtz J C, Sterinberg P, Reed R L, Jones D P. Glutathione in human plasma: decline in association with aging, age-related macular degeneration, and diabetes.  Free Radic Biol Med. 1998;  24 699-704
  • 29 Navarro J, Obrador E, Carretero J, Petschen I, Avino J, Perez P, Estrela J M. Changes in glutathione status and the antioxidant system in blood and in cancer cells associated with tumour growth in vivo.  Free Radic Biol Med. 1999;  26 410-418
  • 30 Herzenberg L A, Rosa S C De, Dubs J G, Roederer M, Anderson M T, Ela S W, Dereninski S C, Herzenberg L A. Glutathione deficiency is associated with impaired survival in HIV disease.  Proc Natl Acad Sci USA. 1997;  94 1967-1972
  • 31 Ross R, Milzani A, Dalle-Donne I, Giustarini D, Lusini L, Colombo R, Simplicio P Di. Blood glutathione disulfide: In vivo factor or in vitro artefact?.  Clin Chem. 2002;  48 742-753
  • 32 Brigelium-Flohé R, Kelly F J, Salonen J R, Neuzil J, Zingg J M, Azzi A. The European perspective on vitamin E: current knowledge and future research.  Am J Clin Nutr. 2002;  76 703-716
  • 33 Benzie I F, Strain J J. The ferric reducing ability of plasma (FRAP) as a measure of „antioxidant power”: the FRAP assay.  Anal Biochem. 1996;  239 70-76
  • 34 Güler K, Palanduz S, Ademoglu E, Sahnayenli N, Gökkusu C, Vatanserver S. Total antioxidant status, lipid parameters, lipid peroxidation and glutathione levels in patients with acute myocardial infarction.  Med Sci Res. 1998;  26 105-106
  • 35 Miller N J, Rice-Evans C, Davies M J, Gopinathan V, Milner A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in plasma and body fluids.  Meth Enzymol. 1994;  234 279-293
  • 36 Rice-Evans C, Miller N J. Total antioxidant status in plasma and body fluids.  Meth Enzymol. 1994;  234 279-293
  • 37 Wayner D D, Burton G W, Ingold K U, Locke S. Quantitative measurement of the total, peroxyl radical-trapping antioxidant capacity of human blood plasma by controlled peroxidation.  FEBS Lett. 1985;  187 33-37
  • 38 Alho H, Leinonen J. Total antioxidant activity measured by chemiluminescence methods.  Meth Enzymol. 1999;  299 3-14
  • 39 Glazer A N. Phycoerythrin fluorescence-based assay for reactive oxygen species.  Meth Enzymol. 1990;  186 161-168
  • 40 Cao G, Booth S L, Sadowski J A, Prior R L. Increases in human plasma antioxidant capacity following consumption of controlled diets high in fruits and vegetables.  Am J Clin Nutr. 1998;  68 1081-1087
  • 41 Cao G, Prior R L. Comparison of different analytical methods for assessing total antioxidant capacity of human serum.  Clin Chem. 1998;  44 1309-1315
  • 42 Jackson P, Loughrey C M, Leghtbody J H, McNamee P T, Young I S. Effect of hemodialysis on total antioxidant capacity and serum antioxidants in patients with chronic renal failure.  Clin Chem. 1995;  41 1135-1138
  • 43 Gerardi G M, Usberti M, Martini G, Alberini A, Sugherini L, Pompella A, Lorenzo D Di. Plasma total antioxidant capacity in hemodialyzed patients and its relationships to other biomarkers of oxidative stress and lipid peroxidation.  Clin Chem Lab Med. 2002;  40 104-110
  • 44 Cao G, Shukitt-Hale B, Bichford P C, Joseph J A, McEwen J, Prior R L. Hyperoxida-induced changes in antioxidant capacity and the effect of dietary antioxidants.  J Appl Physiol. 1999;  86 1817-1822
  • 45 Farinati F, Cardin R, Degan P, Maria N De, Floyd R A, Thiel D H Van, Naccarato R. Oxidative DNA damage in circulating leukocytes occurs as an early event in chronic HCV infection.  Free Radic Biol Med. 1999;  27 1284-1291
  • 46 O'Byrne K F, Dalgleish A G. Chronic immune activation and inflammation as the cause of malignancy.  Brit J Cancer. 2001;  85 473-483
  • 47 Nathan C F. Peroxide and pteridine: a hypothesis on the regulation of macrophage antimicrobial activity by interferon gamma.  Interferon. 1986;  7 125-143
  • 48 Huber C, Batchelor J R, Fuchs D, Hausen A, Lang A, Niederwieser D, Reibnegger G, Swetly P, Troppmair J, Wachter H. Immune response-associated production of neopterin. Release from macrophages primarily under control of interferon-gamma.  J Exp Med. 1984;  160 310-316
  • 49 Reibnegger G, Auhuber I, Fuchs D, Hausen A, Judmaier G, Prior C, Werner E R, Wachter H. Urinary neopterin levels in acute viral hepatitis.  Hepatology. 1988;  8 771-774
  • 50 Fuchs D, Hausen A, Reibnegger G, Werner E R, Dierich M P, Wachter H. Neopterin as a marker for activated cell-mediated immunity: application in HIV infection.  Immunol Today. 1988;  9 150-155
  • 51 Lim K L, Jones A C, Brown N S, Powell R J. Urine neopterin as a parameter of disease activity in patients with systemic lupus erythematosus: comparisons with serum sIL-2R and antibodies to dsDNA, erythrocyte sedimentation rate, and plasma C3, C4, and C3 degradation products.  Ann Rheum Dis. 1993;  52 429-435
  • 52 Hausen A, Fuchs D, Grunewald K, Huber H, Koenig K, Wachter H. Urinary neopterine as marker for haematological neoplasias.  Clin Chim Acta. 1981;  117 297-305
  • 53 Murr C, Bergant A, Widschwendter M, Heim K, Schröcksnadel H, Fuchs D. Neopterin is an independent prognostic variable in females with breast cancer.  Clin Chem. 1999;  45 1998-2004
  • 54 Margreiter R, Fuchs D, Hausen A, Huber C, Reibnegger G, Spielberger M, Wachter H. Neopterin as a new biochemical marker for diagnosis of allograft rejection. Experience based upon evaluation of 100 consecutive cases.  Transplantation. 1983;  36 650-653
  • 55 Tatzber F, Rabl H, Koriska K, Erhart U, Puhl H, Waeg G, Krebs A, Esterauer H. Elevated serum neopterin levels in atherosclerosis.  Atherosclerosis. 1991;  89 203-208
  • 56 Leblhuber F, Walli J, Demel U, Tilz G P, Widner B, Fuchs D. Increased serum neopterin concentrations in patients with Alzheimer's disease.  Clin Chem Lab Med. 1999;  37 429-431
  • 57 Widner B, Leblhuber F, Fuchs D. Increased neopterin production and tryptophan degradation in advanced Parkinson's disease.  J Neural Transm. 2002;  109 181-189
  • 58 Murr C, Fuchs D, Gossler W, Hausen A, Reibnegger G, Werner E R, Werner-Felmayer G, Esterbauer H, Wachter H. Enhancement of hydrogen peroxide-induced luminol-dependent chemiluminescence by neopterin depends on the presence of iron chelator complexes.  FEBS Lett. 1994;  338 223-226
  • 59 Herpfer I, Greilberger J, Ledinski G, Widner B, Fuchs D, Jurgens G. Neopterin and 7,8-dihydroneopterin interfere with low density lipoprotein oxidation mediated by peroxynitrite and/or copper.  Free Radic Res. 2002;  36 509-520
  • 60 Widner B, Baier-Bitterlich G, Wede I, Wirleitner B, Fuchs D. Neopterin derivatives modulate the nitration of tyrosine by peroxynitrite.  Biochem Biophys Res Commun. 1998;  248 341-346
  • 61 Kojima S, Icho T, Mori H, Arai T. Enhancing potency of neopterin toward B-16 melanoma cell damage induced by UV-A irradiation and its possible application for skin tumor treatment.  Anticancer Res. 1995;  15 1975-1980
  • 62 Weiss G, Fuchs D, Hausen A, Reibnegger G, Werner E R, Werner-Felmayer G, Semenitz E, Dierich M P, Wachter H. Neopterin modulates toxicity mediated by reactive oxygen and chloride species.  FEBS Lett. 1993;  321 89-92
  • 63 Reibnegger G, Fuchs D, Murr C, Dierich M P, Pfleiderer W, Wachter H. Effects of pteridines on luminol-dependent chemiluminescence induced by chloramine-T.  Free Radic Biol Med. 1995;  18 515-523
  • 64 Gieseg S P, Reibnegger G, Wachter H, Esterbauer H. 7,8 -dihydroneopterin inhibits low density lipoprotein oxidation in vitro. Evidence that this macrophage secreted pteridine is an anti-oxidant.  Free Radic Res. 1995;  23 123-136
  • 65 Baier-Bitterlich G, Fuchs D, Murr C, Reibnegger G, Werner-Felmayer G, Sgonc R, Bock G, Dierich M P, Wachter H. Effect of neopterin and 7,8-dihydroneopterin on tumor necrosis factor-alpha induced programmed cell death.  FEBS Lett. 1995;  364 234-238
  • 66 Oettl K, Dikalov S, Freisleben H J, Mlekusch W, Reibnegger G. Spin trapping study of antioxidant properties of neopterin and 7,8-dihydroneopterin.  Biochem Biophys Res Commun. 1997;  234 774-778
  • 67 Thomas A H, Lorente C, Capparelli A L, Martinez C G, Braun A M, Oliveros E. Singlet oxygen (1deltag) production by pterin derivatives in aqueous solutions.  Photochem Photobiol Sci. 2003;  2 245-250
  • 68 Razumovitchi J A, Semenkova G N, Fuchs D, Cherenkevich S N. Influence of neopterin on the generation of reactive oxygen species in human neutrophils under the action of neopterin. FEBS Lett 2003, in press
  • 69 Witko-Sarsat V, Friedlander M, Capeillere-Blandin C, Nguyen-Khoa T, Nguyen A T, Zingraff J, Jungers P, Descamps-Latscha B. Advanced oxidation protein products as a novel marker of oxidative stress in uremia.  Kidney Int. 1996;  49 1304-1313
  • 70 Witko-Sarsat V, Friedlander M, Nguyen K hoa, Capeillere-Blandin C, Nguyen A T, Canteloup S, Dayer J M, Jungers P, Drueke T, Descamps-Latscha B. Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure.  J Immunol. 1998;  161 2524-2532
  • 71 Sattler W, Leblhuber F, Walli J, Widner B, Fuchs D. Cerebrospinal fluid levels of α-tocopherol and neopterin in patients with dementia.  Pteridines. 1999;  10 220-224
  • 72 Solichova D, Melichar B, Blaha V, Klejna M, Vavrova J, Palicka V, Zadak Z. Biochemical profile and survival in nonagenarians.  Clin Biochem. 2001;  34 563-569
  • 73 Hronek M, Zadak Z, Solichova D, Jandik P, Melichar B. The association between specific nutritional antioxidants and manifestation of colorectal cancer.  Nutrition. 2000;  16 189-191
  • 74 Zvetkova E, Wirleitner B, Tram N T, Schennach H, Fuchs D. Aqueous extracts of Crinum latifolium (L.) and Camellia sinensis show immunomodulatory properties in human peripheral blood mononuclear cells.  Int Immunopharmacol. 2001;  1 2143-2150
  • 75 Neurauter G, Wirleitner B, Schroecksnadel K, Schennach H, Fuchs D. Red and white wine as well as grape juice modulate interferon-γ-induced neopterin production and tryptophan degradation in human PBMC.  Pteridines. 2003;  14 52
  • 76 Heyden S. Das Ende der Supplementierung mit antioxidantiven Vitaminen.  Aktuel Ernaehr Med. 2003;  28 113-120
  • 77 El-Khairy L, Vollset S E, Refsum H, Ueland P M. Plasma total cysteine, mortality, and cardiovascular disease hospitalizations: The Hordaland homocysteine study.  Clin Chem. 2003;  49 895-900
  • 78 Wede I, Altindag Z Z, Widner B, Wachter H, Fuchs D. Inhibition of xanthine oxidase by pterins.  Free Radic Res. 1998;  29 331-338
  • 79 Baier-Bitterlich G, Fuchs D, Zangerle R, Baeuerle P A, Werner E R, Fresser F, Überall F, Baier G, Wachter H. Trans-Activation of the HIV type 1 promoter by 7,8-dihydroneopterin in vitro.  AIDS Res Hum Retroviruses. 1997;  13 173-178
  • 80 Überall F, Werner-Felmayer G, Schubert C, Grunicke H H, Wachter H, Fuchs D. Neopterin derivatives together with cyclic guanosine monophosphate induce c-fos gene expression.  FEBS Lett. 1994;  352 11-14
  • 81 Baier-Bitterlich G, Fuchs D, Wachter H. 7,8-dihydroneopterin upregulates interferon-gamma promoter in T cells.  Immunobiology. 1996;  196 350-355
  • 82 Hoffmann G, Frede S, Kenn S, Smolny M, Wachter H, Fuchs D, Grote J, Rieder J, Schobersberger W. Neopterin-induced tumor necrosis factor-alpha synthesis in vascular smooth muscle cells in vitro.  Int Arch Allergy Immunol. 1998;  116 240-245
  • 83 Hoffmann G, Rieder J, Smolny M, Seibel M, Wirleitner B, Fuchs D, Schobersberger W. Neopterin-induced expression of intercellular adhesion molecule-1 (ICAM-1) in type II-like alveolar epithelial cells.  Clin Exp Immunol. 1999;  118 435-440
  • 84 Schobersberger W, Hoffmann G, Grote J, Wachter H, Fuchs D. Induction of inducible nitric oxide synthase expression by neopterin in vascular smooth muscle cells.  FEBS Lett. 1995;  377 461-464
  • 85 Baier-Bitterlich G, Baier G, Fuchs D, Bock G, Hausen A, Utermann G, Pavelka M, Wachter H. Role of 7,8-dihydroneopterin in T-cell apoptosis and HTLV-1 transcription in vitro.  Oncogene. 1996;  13 2281-2285

Dr. Dietmar Fuchs

Institut für medizinische Chemie und Biochemie · Leopold-Franzens-Universität Innsbruck · Boltzmann-Institut für AIDS-Forschung

Fritz-Pregl-Straße 3

6020 Innsbruck · Austria

Phone: ++ 43/512/507-3519

Fax: ++ 43/512/507-2865

Email: dietmar.fuchs@uibk.ac.at