Klinische Neurophysiologie 2003; 34(4): 156-161
DOI: 10.1055/s-2003-812576
Originalia
© Georg Thieme Verlag Stuttgart · New York

Stellenwert der Magnetenzephalographie für die Epilepsiediagnostik

Ranking of Magnetoencephalography in the Diagnosis of EpilepsyH.  Stefan1 , G.  Scheler1 , M.  J. M.  Fischer1
  • 1Neurologische Klinik, Zentrum für Epilepsie (ZEE) der Universität Erlangen-Nürnberg
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
09. Januar 2004 (online)

Zusammenfassung

Die Magnetenzephalographie (MEG) ist ein nicht-invasives Verfahren, das derzeit klinisch primär in der prächirurgischen Diagnostik eingesetzt wird. Gemessen werden hierbei durch neuronale Aktivität des Gehirns generierte magnetische Felder. Unter Zuhilfenahme theoretischer Grundannahmen wird hieraus die Quelle des Signals berechnet. Die Ergebnisse werden in die magnetresonanztomographisch gewonnenen Bilder der individuellen Gehirnanatomie eingetragen. Neuere Lokalisationsverfahren nutzen die individuelle Gehirnanatomie für die Quellenberechnung. Aus epilepsietypischen Signalen während spontaner Gehirnaktivität werden epileptogene Hirnareale lokalisiert, ergänzende evozierte Signale erlauben funktionell wichtige Regionen in räumlicher Relation zu epileptogenen Hirnarealen darzustellen und dies für eine funktionserhaltende Chirurgie zu nutzen. Im Vergleich zu Lokalisationsrechnungen aus EEG-Daten ergeben sich physikalisch Vor- und Nachteile, insgesamt bietet eine gleichzeitige Registrierung von MEG und EEG einen klaren Informationsgewinn. Bei invasiver elektrophysiologischer Diagnostik geben MEG-Daten richtungweisende Hinweise, teilweise kann eine invasive Diagnostik auch vermieden werden. Gemeinsam mit bildgebender Diagnostik, EEG-Monitoring und neuropsychologischer Untersuchung ist das MEG bei pharmakoresistenten Epilepsien heute ein wichtiger Bestandteil der Entscheidung für oder gegen ein chirurgisches Vorgehen sowie der Operationsplanung.

Abstract

Magnetoencephalography is a noninvasive procedure of primary clinical use in the presurgical evaluation of epilepsy patients. This technique records magnetic fields generated by spontaneous or evoked brain activity. The source of detected epileptic activity or averaged evoked activity is calculated and then overlaid onto the patient's individual brain architecture acquired by magnetic resonance imaging. Advanced techniques use the individual's own brain architecture for source localisation. The technique can also be used in neurosurgery to localise epileptic activity and important functional regions that need to be protected. Owing to the physical limitations of both methods, improved precision of source localisation can be achieved using MEG and EEG in comparison to EEG alone. MEG allows better planning or avoiding invasive diagnostics. Together with MRI, SPECT, EEG monitoring and neuropsychological testing, MEG plays an important role in decision making for surgery and in the tailoring of resections in drug-resistant epilepsy patients.

Literatur

  • 1 Lüders H O. Epilepsy Surgery. New York; Raven Press 1991
  • 2 Ebner A, Lüders H O. Basic Concepts and Electrophysiological Approach in Localization Related Epilepsies. In: Pawlik G, Stefan H Focus Localization. Berlin; Liga-Verlag 1996
  • 3 Hämäläinen M, Hari R, Ilmoniemi L J, Knuutila J, Lounasmaa O V. Magnetoencephalography - theory, instrumentation, and applications to noninvasive studies of the working human brain.  Reviews of Modern Physics. 1993;  65 (2) 413-497
  • 4 Hari R. Human cortical functions revealed by magnetoencephalography.  Prog Brain Res. 1994;  100 163-168
  • 5 Hari R. Comment: MEG in the study of epilepsy.  Acta Neurol Scand Suppl. 1994;  152 89-90
  • 6 Hari R. Magnetoencephalography as a Tool of Clinical Neurophysiology. In: Niedermeyer E, Lopes da Silva F (ed) Electroencephalography. Baltimore; Williams and Williams 1994: 1035-1061
  • 7 Abraham-Fuchs K, Schneider S, Stefan H. Principles of Magnetoencephalography. In: Pawlik G, Stefan H (eds) Focus Localization. Berlin; Liga-Verlag 1996: 222-246
  • 8 Stefan H, Hummel C. Magnetoencephalography. In: Meinardi H (ed) Handbook of Clinical Neurology. Amsterdam; Elsevier 1999: 319-336
  • 9 Leahy R M, Mosher J C, Spencer M E, Huang M X, Lewine J D. A study of dipole localization accuracy for MEG and EEG using a human skull phantom.  Electroencephalogr Clin Neurophysiol. 1998;  107 (2) 159-173
  • 10 Lopes da Silva F H, Wieringa H J, Peters M J. Source localization of EEG versus MEG: empirical comparison using visually evoked responses and theoretical considerations.  Brain Topogr. 1991;  4 (2) 133-142
  • 11 Ganslandt O, Fahlbusch R, Nimsky C, Kober H, Moller M, Steinmeier R, Romstöck J, Vieth J. Functional neuronavigation with magnetoencephalography: outcome in 50 patients with lesions around the motor cortex.  J Neurosurg. 1999;  91 (1) 73-79
  • 12 Nimsky C, Ganslandt O, Kober H, Moller M, Ulmer S, Tomandl B, Fahlbusch R. Integration of functional magnetic resonance imaging supported by magnetoencephalography in functional neuronavigation.  Neurosurgery. 1999;  44 (6) 1249-1255; discussion 1255 - 1256
  • 13 Orrison W W. Magnetic source imaging in stereotactic and functional neurosurgery.  Stereotact Funct Neurosurg. 1999;  72 (2 - 4) 89-94
  • 14 Gross J, Ioannides A A. Linear transformations of data space in MEG.  Phys Med Biol. 1999;  44 (8) 2081-2097
  • 15 McDonald J D, Chong B W, Lewine J D, Jones G, Burr R B, McDonald P R, Koehler S B, Tsuruda J, Orrison W W, Heilbrun M P. Integration of preoperative and intraoperative functional brain mapping in a frameless stereotactic environment for lesions near eloquent cortex. Technical note.  J Neurosurg. 1999;  90 (3) 591-598
  • 16 Makela A M, Makinen V, Nikkila M, Ilmoniemi R J, Tiitinen H. Magnetoencephalographic (MEG) localization of the auditory N400 m: effects of stimulus duration.  Neuroreport. 2001;  12 (2) 249-253
  • 17 Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R. Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging.  Neurosurgery. 2000;  47 (5) 1070-1079; discussion 1079 - 1080
  • 18 Knowlton R C, Laxer K D, Aminoff M J, Roberts T P, Wong S T, Rowley H A. Magnetoencephalography in partial epilepsy: clinical yield and localization accuracy.  Ann Neurol. 1997;  42 (4) 622-631
  • 19 Baumgartner C, Pataraia E, Lindinger G, Deecke L. Magnetoencephalography in focal epilepsy.  Epilepsia. 2000;  41, Suppl 3 39-47
  • 20 Baumgartner C, Pataraia E, Lindinger G, Deecke L. Neuromagnetic recordings in temporal lobe epilepsy.  J Clin Neurophysiol. 2000;  17 (2) 177-189
  • 21 Stefan H, Hummel C, Scheler G, Genow A, Druschky K, Tilz C, Kaltenhauser M, Hopfengartner R, Buchfelder M, Romstock J. Magnetic Brain Source Imaging of Focal Epileptic Activity: a Synopsis of 455 Cases.  Brain. 2003;  126 1-10
  • 22 Eliashiv D S, Elsas S M, Squires K, Fried I, Engel J. Ictal magnetic source imaging as a localizing tool in partial epilepsy.  Neurology. 2002;  59 (10) 1600-1610
  • 23 Abraham-Fuchs K, Härer W, Schneider S, Stefan H. Pattern recognition in biomagnetic signals by spatio-temporal correlation and application to the localisation of propagating neuronal activity. Medical and Biological Engineering and Computing 1990
  • 24 Stefan H, Schneider S, Abraham Fuchs K, Pawlik G, Feistel H, Bauer J, Neubauer U, Huk W J, Holthoff V. The neocortico to mesio-basal limbic propagation of focal epileptic activity during the spike-wave complex.  Electroencephalogr Clin Neurophysiol. 1991;  79 (1) 1-10
  • 25 Brockhaus A, Lehnertz K, Wienbruch C, Kowalik A, Burr W, Elbert T, Hoke M. Possibilities and limitations of magnetic source imaging of methohexital linduced epileptiform patterns in temporal lobe epilepsy patients.  Electroencephalogr Clin Neurophysiol. 1997;  102 423-436
  • 26 Kirchberger K, Schmitt H, Hummel C, Kettenmann B, Stefan H. Clonidine activation of epileptogenic foci during multichannel magnetoencephalography.  Epilepsia. 1998;  39 (2) 48
  • 27 Baumgartner C, Lindinger G, Ebner A, Aull S, Serles W, Olbrich A, Lurger S, Czech T, Burgess R, Luders H. Propagation of interictal epileptic activity in temporal lobe epilepsy.  Neurology. 1995;  45 (1) 118-122
  • 28 Merlet I, Garcia Larrea L, Gregoire M C, Lavenne F, Mauguiere F. Source propagation of interictal spikes in temporal lobe epilepsy. Correlations between spike dipole modelling and [18F]fluorodeoxyglucose PET data.  Brain. 1996;  119 (Pt 2) 377-392
  • 29 Stefan H, Schneider S, Abraham Fuchs K, Bauer J, Feistel H, Pawlik G, Neubauer U, Röhrlein G, Huk W J. Magnetic source localization in focal epilepsy. Multichannel magnetoencephalography correlated with magnetic resonance brain imaging.  Brain. 1990;  113 (Pt 5) 1347-1359
  • 30 Tilz C, Hummel C, Kettenmann B, Stefan H. Ictal onset localization of epileptic seizures by magnetoencephalography.  Acta Neurol Scand. 2002;  106 (4) 190-195
  • 31 Sutherling W W, Barth D S. Neocortical propagation in temporal lobe spike foci on magnetoencephalography and electroencephalography.  Ann Neurol. 1989;  25 (4) 373-381
  • 32 Sutherling W W, Crandall P H, Engel J, Darcey T M, Cahan L D, Barth D S. The magnetic field of complex partial seizures agrees with intracranial localizations.  Ann Neurol. 1987;  21 (6) 548-558
  • 33 Stefan H, Schneider S, Feistel H, Pawlik G, Schüler P, Abraham Fuchs K, Schlegel T, Neubauer U, Huk W J. Ictal and interictal activity in partial epilepsy recorded with multichannel magnetoelectroencephalography: correlation of electroencephalography/electrocorticography, magnetic resonance imaging, single photon emission computed tomography, and positron emission tomography findings.  Epilepsia. 1992;  33 (5) 874-887
  • 34 Ishibashi H, Morioka T, Shigeto H, Nishio S, Yamamoto T, Fukui M. Three-dimensional localization of subclinical ictal activity by magnetoencephalography: correlation with invasive monitoring.  Surg Neurol. 1998;  50 (2) 157-163
  • 35 Schwartz D P, Badier J M, Vignal J P, Toulouse P, Scarabin J M, Chauvel P. Non-supervised spatio-temporal analysis of interictal magnetic spikes: comparison with intracerebral recordings.  Clin Neurophysiol. 2003;  114 (3) 438-449
  • 36 Nakasato N, Levesque M F, Barth D S, Baumgartner C, Rogers R L, Sutherling W W. Comparisons of MEG, EEG, and ECoG source localization in neocortical partial epilepsy in humans.  Electroencephalogr Clin Neurophysiol. 1994;  91 (3) 171-178
  • 37 Knowlton R C, Wong S TC, Woods R P, Mazziotta J C. Coregistration. In: Engel J, Pedley TAJ (eds) Epilepsy: A Comprehensive Textbook. Philadelphia; Lippincott-Raven 1997: 1081-1097
  • 38 Baumgartner C. Clinical applications of magnetoencephalography [editorial; comment].  J Clin Neurophysiol. 2000;  17 (2) 175-176
  • 39 Morioka T, Nishio S, Hisada K, Shigeto H, Yamamoto T, Fujii K, Fukui M. Neuromagnetic assessment of epileptogenicity in cerebral arteriovenous malformation.  Neurosurg Rev. 2000;  23 (4) 206-212
  • 40 Morioka T, Nishio S, Shigeto H, Goto Y, Yamamoto T, Minami T, Gondo K, Fujii K, Fukui M. Surgical management of intractable epilepsy associated with cerebral neurocytoma.  Neurol Res. 2000;  22 (5) 449-456
  • 41 Pataraia E, Baumgartner C, Lindinger G, Deecke L. Magnetoencephalography in presurgical epilepsy evaluation.  Neurosurg Rev. 2002;  25 (3) 141-159, discussion 160 - 161
  • 42 Kirchberger K, Hummel C, Stefan H. Postoperative multichannel magnetoencephalography in patients with recurrent seizures after epilepsy surgery.  Acta Neurol Scand. 1998;  98 (1) 1-7
  • 43 Tilz C, Kaltenhäuser M, Genow A, Scheler G, Hummel C, Ganslandt O, Stefan H. MEG Evaluation After Neurosurgical Treatment. Jena; Biomag 2002
  • 44 Sutherling W W, Crandall P H, Cahan L D, Barth D S. The magnetic field of epileptic spikes agrees with intracranial localizations in complex partial epilepsy.  Neurology. 1988;  38 (5) 778-786
  • 45 Rowley H A, Roberts T P. Functional localization by magnetoencephalography.  Neuroimaging Clin N Am. 1995;  5 (4) 695-710
  • 46 Gallen C C, Sobel D F, Lewine J D, Sanders J A, Hart B L, Davis L E, Orrison W W. Neuromagnetic mapping of brain function.  Radiology. 1993;  187 (3) 863-867
  • 47 Gallen C C, Schwartz B J, Bucholz R D, Malik G, Barkley G L, Smith J, Tung H, Copeland B, Bruno L, Assam S. Presurgical localization of functional cortex using magnetic source imaging.  J Neurosurg. 1995;  82 (6) 988-994
  • 48 Smith J R, Gallen C C, Schwartz B J. Multichannel magnetoencephalographic mapping of sensorimotor cortex for epilepsy surgery.  Stereotact Funct Neurosurg. 1994;  62 (1 - 4) 245-251
  • 49 Kober H, Nimsky C, Moller M, Hastreiter P, Fahlbusch R, Ganslandt O. Correlation of sensorimotor activation with functional magnetic resonance imaging and magnetoencephalography in presurgical functional imaging: a spatial analysis.  Neuroimage. 2001;  14 (5) 1214-1228
  • 50 Breier J I, Simos P G, Zouridakis G, Papanicolaou A C. Lateralization of cerebral activation in auditory verbal and non-verbal memory tasks using magnetoencephalography.  Brain Topogr. 1999;  12 (2) 89-97
  • 51 Breier J I, Simos P G, Zouridakis G, Papanicolaou A C. Temporal course of regional brain activation associated with phonological decoding.  J Clin Exp Neuropsychol. 1999;  21 (4) 465-476
  • 52 Simos P G, Breier J I, Fletcher J M, Bergman E, Papanicolaou A C. Cerebral mechanisms involved in word reading in dyslexic children: a magnetic source imaging approach.  Cereb Cortex. 2000;  10 (8) 809-816
  • 53 Simos P G, Breier J I, Fletcher J M, Foorman B R, Bergman E, Fishbeck K, Papanicolaou A C. Brain activation profiles in dyslexic children during non-word reading: a magnetic source imaging study.  Neurosci Lett. 2000;  290 (1) 61-65
  • 54 Pardo P J, Makela J P, Sams M. Hemispheric differences in processing tone frequency and amplitude modulations.  Neuroreport. 1999;  10 (14) 3081-3086
  • 55 Ganslandt O, Nimsky C, Fahlbusch R. Magnetic source imaging.  J Neurosurg. 2000;  92 (6) 1079-1080
  • 56 Stefan H, Andermann F, Chauvel P, Shorvon S. Plasticity in Epilepsy: Dynamic Aspects of Brain Function. Advances in Neurology, Vol. 81. Philadelphia; Lippincott, Williams, and Wilkins 1999

Prof. Dr. med. Dr. Prof. h. c. Hermann Stefan

Zentrum für Epilepsie Erlangen · Neurologische Universitätsklinik

Schwabachanlage 6

91054 Erlangen

eMail: hermann.stefan@neuro.imed.uni-erlangen.de