Zusammenfassung
Untersuchungen mittels Positronenemissionstomographie (PET) haben zum pathophysiologischen und biochemischen Verständnis fokaler und generalisierter Epilepsien wesentlich beigetragen. H2
15 O PET erlaubt Aussagen zum regionalen zerebralen Blutfluss (rZBF) und 18 F-Fluorodeoxyglukose(FDG)-PET zum Glukosestoffwechsel. Iktale PET-Aufnahmen mit H2
15 O sind wegen der 2-minütigen Halbwertszeit üblicherweise nicht planbar. Iktale 18 F-FDG-PET-Aufnahmen sind wegen der protrahierten Aufnahme von FDG schwer zu interpretieren. Untersuchungen des rZBF und Glukosestoffwechsels geben nur indirekte Hinweise auf synaptische Aktivität. Neurotransmitter sind direkt verantwortlich für die Steuerung neuronaler Aktivität und PET erlaubt die quantitative Erfassung spezifischer Liganden-Rezeptor-Verhältnisse, die für die Entstehung und Weiterleitung epileptischer Aktivität von Bedeutung sind. Klinisch von Bedeutung sind: 1. 11 C-Flumazenil (FMZ), das den GABAA -Rezeptor darstellt, und 2. 11 C-Diprenorphin (DPN), das mit ähnlicher Affinität an μ-, κ- und δ-Opioidrezeptoren bindet. Die Koregistrierung struktureller Informationen ist zur genauen Interpretation funktioneller PET-Daten notwendig. Falls pathologische Strukturveränderungen in der MRT vorliegen, wie beispielsweise Hippokampussklerosen, muss für Teilvolumeneffekte korrigiert werden. Teilvolumeneffekte sind nichtlinear und betreffen bevorzugt kleinere Strukturen, so dass diese eine scheinbare Aktivitätsminderung oder sogar Aktivitätssteigerung („spill-over”) aufweisen. In dieser Übersichtsarbeit stellen wir zunächst PET-Untersuchungen bei idiopathisch-generalisierten Epilepsien (IGE) vor, gefolgt von einer nach Glukosestoffwechsel, Blutfluss und Neurotransmitterveränderungen gegliederten Auflistung von PET-Untersuchungen bei fokalen Epilepsiesyndromen.
Abstract
Studies using positron emission tomography (PET) have advanced our pathophysiological and biochemical understanding of focal and generalised epilepsies. H2
15 O PET allows quantification of cerebral blood flow (rCBF), and 18 F-fluorodeoxyglucose (FDG)-PET quantification of cerebral glucose metabolism. Ictal H2
15 O PET studies are difficult because of its short half-life (2 min), ictal 18 F-FDG-PET are difficult to interpret due to its prolonged uptake. H2
15 O and 18 F-FDG-PET are only indirect markers of neuronal activity. Neurotransmitters are directly responsible for modulating synaptic activity and PET allows quantification of specific ligand-receptor relationships which are important for epileptogenesis and spread of epileptic activity. Clinically important are: (1) 11 C-flumazenil (FMZ), which images GABAA -receptors, and (2) 11 C-diprenorphin (DPN), which has similar affinity to μ-, κ- and δ-opioid receptors. Co-registration of structural information is essential for the exact interpretation of functional PET data. Correction for partial volume effects is important if there are structural pathological changes, e. g. hippocampal sclerosis. Partial volume effects are non-linear and are of particular importance for small structures, leading to under- or even overestimation (spill-over) of true activity. In this review, we first present PET studies in idiopathic generalised epilepsies, followed by a summary of PET studies investigating glucose metabolism, rCBF and neurotransmitter changes in focal epilepsies.
Key words
PET - rCBF - glucose metabolism - neurotransmitter - epilepsies
Literatur
1
Prevett M C, Duncan J S, Jones T, Fish D R, Brooks D J.
Demonstration of thalamic activation during typical absence seizures using H2
15 O and PET.
Neurology.
1995;
45
1396-1402
2 Koepp M J, Duncan J S. Positron emission tomography in idiopathic generalized epilepsy: Imaging beyond structure. In: Schmitz B, Sander T (eds) Juvenile myoclonic epilepsy: The Janz syndrome. London; Wrightson 2000: 91-99
3 Koepp M J, Duncan J S. PET: Opiate neuroreceptor mapping. In: Henry TR, Duncan JS, Berkovic SF (eds) Functional imaging in the epilepsies. Philadelphia; Lippincott Williams & Wilkins 2000: 145-155
4 Henry T R. PET: Cerebral blood flow and glucose metabolism - Presurgical localization. In: Henry TR, Duncan JS, Berkovic SF (eds) Functional imaging in the epilepsies. Philadelphia; Lippincott Williams & Wilkins 2000: 105-120
5
Knowlton R C, Laxer K D, Ende G, Hawkins R A, Wong S T, Matson G B. et al .
Presurgical multimodality neuroimaging in electroencephalographic lateralized temporal lobe epilepsy.
Ann Neurol.
1997;
42
829-837
6
Koutroumanidis M, Hennessy M J, Seed P T, Elwes R D, Jarosz J, Morris R G. et al .
Significance of interictal bilateral temporal hypometabolism in temporal lobe epilepsy.
Neurology.
2000;
54
1811-1821
7
Dupont S, Semah F, Clemenceau S, Adam C, Baulac M, Samson Y.
Accurate prediction of postoperative outcome in mesial temporal lobe epilepsy: a study using positron emission tomography with 18 fluorodeoxyglucose.
Arch Neurol.
2000;
57
1331-1336
8
Knowlton R C, Laxer K D, Klein G, Sawrie S, Ende G, Hawkins R A. et al .
In vivo hippocampal glucose metabolism in mesial temporal lobe epilepsy.
Neurology.
2001;
57
1184-1190
9
Bogaert P Van, David P, Gillain A, Wikler D, Damhaut P, Scalais E. et al .
Perisylvian dysgenesis. Clinical, EEG, MRI and glucose metabolism features in 10 patients.
Brain.
1998;
121
2229-2238
10
Chugani H T, Shields W D, Shewmon D A, Olson D M, Phelps M E, Peacock W J.
Infantile spasms: I. PET identifies focal cortical dysgenesis in cryptogenic cases for surgical treatment.
Ann Neurol.
1990;
27 (4)
406-413
11
Savic I, Persson A, Roland P, Paulis S, Sedvall G, Widen L.
In-vivo demonstration of reduced benzodiazepine receptor binding in human epileptic foci.
Lancet.
1988;
2
863-866
12
Juhász C, Chugani D C, Muzik O, Watson C, Shah J, Shah A. et al .
Electroclinical correlates of flumazenil and fluorodeoxyglucose PET abnormalities in lesional epilepsy.
Neurology.
2000;
55
825-834
13
Koepp M J, Richardson M P, Labbé C, Brooks D J, Cunningham V J, Ashburner J. et al .
11 C-flumazenil PET, volumetric MRI, and quantitative pathology in mesial temporal lobe epilepsy.
Neurology.
1997;
49 (3)
764-773
14
Ryvlin P, Bouvard S, Bars D le, Lamérie G de, Grégoire M C, Kahane P. et al .
Clinical utility of flumazenil-PET versus [18 F] fluorodeoxyglucose-PET and MRI in refractory partial epilepsy. A prospective study in 100 patients.
Brain.
1998;
121
2067-2081
15
Ryvlin P, Bouvard S, Bars D le, Mauguiere F.
Transient and falsely lateralizing flumazenil-PET asymmetries in temporal lobe epilepsy.
Neurology.
1999;
53 (8)
1882-1885
16
Hand K S, Baird V H, Paesschen W Van, Koepp M J, Revesz T, Thom M. et al .
Central benzodiazepine receptor autoradiography in hippocampal sclerosis.
Br J Pharmacol.
1997;
122 (2)
358-364
17
Koepp M J, Hand K S, Labbé C, Richardson M P, Paesschen W Van, Baird V H. et al .
In vivo [11 C]flumazenil-PET correlates with ex vivo [3 H]flumazenil autoradiography in hippocampal sclerosis.
Ann Neurol.
1998;
43 (5)
618-626
18
Hammers A, Koepp M J, Labbé C, Brooks D J, Thom M, Cunningham V J. et al .
Neocortical abnormalites of [11 C]-flumazenil PET in mesial temporal lobe epilepsy.
Neurology.
2001;
56
897-906
19
Szelies B, Weber-Luxenburger G, Mielke R, Pawlik G, Kessler J, Pietrzyk U. et al .
Interictal hippocampal benzodiazepine receptors in temporal lobe epilepsy: comparison with coregistered hippocampal metabolism and volumetry.
Eur J Neurol.
2000;
7 (4)
393-400
20
Lamusuo S, Pitkänen A, Jutila L, Ylinin A, Partanen K, Kälviäinen R. et al .
[11 C]Flumazenil binding in the medial temporal lobe in patients with temporal lobe epilepsy. Correlation with hippocampal MR volumetry, T2 relaxometry, and neuropathology.
Neurology.
2000;
54
2252-2260
21
Koepp M J, Hammers A, Labbé C, Wörmann F G, Brooks D J, Duncan J S.
11 C-flumazenil PET in patients with refractory temporal lobe epilepsy and normal MRI.
Neurology.
2000;
54
332-339
22
Hammers A, Koepp M J, Hurlemann R, Richardson M P, Brooks D J, Duncan J S.
Abnormalities of grey and white matter [11 C] flumazenil binding in temporal lobe epilepsy with normal MRI.
Brain.
2002;
125
2257-2271
23
Savic I, Thorell J O, Roland P.
[11 C]Flumazenil positron emission tomography visualises frontal epileptogenic regions.
Epilepsia.
1995;
36
1225-1232
24
Muzik O, Silva E A da, Juhasz C, Chugani D C, Shah J, Nagy F. et al .
Intracranial EEG versus flumazenil and glucose PET in children with extratemporal lobe epilepsy.
Neurology.
2000;
54 (1)
171-179
25
Juhász C, Chugani D C, Muzik O, Shah A, Shah J, Watson C. et al .
Relationship of flumazenil and glucose PET abnormalities to neocortical epilepsy surgery outcome.
Neurology.
2001;
56
1650-1658
26
Richardson M P, Koepp M J, Brooks D J, Duncan J S.
11 C-flumazenil PET in neocortical epilepsy.
Neurology.
1998;
51
485-492
27
Hammers A, Koepp M J, Richardson M P, Hurlemann R, Brooks D J, Duncan J S.
Grey and white matter flumazenil binding in neocortical epilepsy with normal MRI. A PET study of 44 patients.
Brain.
2003;
126
1300-1318
28
Richardson M P, Friston K J, Sisodiya S M, Koepp M J, Ashburner J, Free S L. et al .
Cortical grey matter and benzodiazepine receptors in malformations of cortical development. A voxel-based comparison of structural and functional imaging data.
Brain.
1997;
120 (Pt 11)
1961-1973
29
Hammers A, Koepp M J, Richardson M P, Labbé C, Brooks D J, Cunningham V J. et al .
Central benzodiazepine receptors in malformations of cortical development. A quantitative study.
Brain.
2001;
124
1555-1565
30
Koepp M J, Richardson M P, Brooks D J, Duncan J S.
Focal cortical release of endogenous opioids during reading-induced seizures.
Lancet.
1998;
352
952-955
31
Chugani D C, Chugani H T.
PET: mapping of serotonin synthesis.
Adv Neurol.
2000;
83
165-171
32
Fedi M, Reutens D, Okazawa H, Andermann F, Boling W, Dubeau F. et al .
Localizing value of alpha-methyl-L-tryptophan PET in intractable epilepsy of neocortical origin.
Neurology.
2001;
57
1629-1636
33
Natsume J, Kumakura Y, Bernasconi N, Soucy J P, Nakai A, Rosa P, Fedi M. et al .
Alpha-[11 C] methyl-L-tryptophan and glucose metabolism in patients with temporal lobe epilepsy.
Neurology.
2003;
60
756-761
34
Toczek M T, Carson R E, Lang L, Ma Y, Spanaki M V, Der M G. et al .
PET imaging of 5-HT1A receptor binding in patients with temporal lobe epilepsy.
Neurology.
2003;
60
749-756
35
Kumlien E, Hartvig P, Valind S, Oye I, Tedroff J, Langstrom B.
NMDA-receptor activity visualized with (S)-[N-methyl-11 C]ketamine and positron emission tomography in patients with medial temporal lobe epilepsy.
Epilepsia.
1999;
40 (1)
30-37
36
Kumlien E, Nilsson A, Hagberg G, Langstrom B, Bergstrom M.
PET with 11 C-deuterium-deprenyl and 18 F-FDG in focal epilepsy.
Acta Neurol Scand.
2001;
103 (6)
360-366
37
Banati R B, Goerres G W, Myers R, Gunn R N, Turkheimer F E, Kreutzberg G W. et al .
[11 C](R)-PK11195 positron emission tomography imaging of activated microglia in vivo in Rasmussen's encephalitis.
Neurology.
1999;
53 (9)
2199-2203
38 Pennell P B. PET: Cholinergic neuroreceptor mapping. In: Henry TR, Duncan JS, Berkovic SF (eds) Functional imaging in the epilepsies. Philadelphia; Lippincott Williams & Wilkins 2000: 157-163
Dr. Matthias J. Koepp
Chalfont Centre for Epilepsy · Chalfont St. Peter
Chesham Lane · Gerrards Cross
Buckinghamshire SL9 0RJ · U. K.
Email: mkoepp@ion.ucl.ac.uk