Zusammenfassung
Fragestellung: Lassen sich Veränderungen in der neuromuskulären Ansteuerung nachweisen, wenn sich die Muskellänge verändert, die Kraftbeanspruchung jedoch identisch bleibt? Material und Methode: An einem Test- und Trainingsgerät für die Schultermuskulatur (IKARUS) wurden in der Sagittal-, Horizontal- und Frontalebene in jeweils vier Winkelstellungen beide entgegengesetzten Kraftrichtungen isometrisch mit einem Beanspruchungsniveau von 50 % der MVC betrachtet. Bei 15 gesunden Männern wurden OEMG-Amplituden von 13 Muskeln im Bereich der Schultern und der Oberarme gemessen. Ergebnisse: Gleiche Beanspruchungsniveaus erfordern unterschiedliche zentralnervöse Ansteuerungen. Diese sind von der aktuellen Muskellänge abhängig. Dabei erreichten die jeweils hauptsächlich an der Kraftgenerierung beteiligten Muskeln ihre höchste OEMG-Amplitude in der Gelenkstellung, in der sie die stärkste Verkürzung aufwiesen. Obwohl die gemessenen Kraftwerte in diesen Gelenkstellungen die geringsten waren, ließen sich beim nicht ermüdeten Muskel gerade hier die höchsten OEMG-Amplituden finden. Dies konnte für 10 der 13 untersuchten Muskeln statistisch signifikant nachgewiesen werden. Schlussfolgerung: Bei identischer muskulärer Beanspruchung ist bei maximal verkürztem Muskel offenbar die höchste neuromuskuläre Ansteuerungsintensität erforderlich. Dies eröffnet insbesondere in Hinblick auf die Rehabilitation funktioneller Teilparesen nach Traumen oder Operationen neue therapeutische Ansätze.
Abstract
Purpose: Is it possible to prove a relationship between changing neuromuscular activation and muscle length at identical strain levels? Materials and methods: In a test and training unit (IKARUS) isometric contractions at 50 % MVC level were performed in sagittal, frontal and horizontal plane. In every plane four angular positions were chosen and both opposite force directions were measured respectively. In a group of 15 healthy men SEMG was taken from 13 arm and shoulder muscles. Results: Equal force strain levels require different central nervous drive intensities. They depend on the actual muscle length. All investigated muscles reached their highest SEMG amplitude in joint positions in which they showed the strongest shortening. Although these positions showed the lowest force levels these non fatigued muscles reached their highest SEMG amplitudes. This could be proven as statistically significant in ten out of all 13 investigated muscles. Conclusion: At identical strain levels the most shortened muscle positions require the highest central nervous drive intensities. This reveals new perspectives concerning rehabilitation strategies of functionally caused pareses after traumata or operations.
Schlüsselwörter
Oberflächen-EMG - Muskellänge - muskuläre Koordination - isometrisches Training - Kraft
Key words
Electromyography - muscle - skeletal - exercise - isometric
Literatur
1
Yang J F, Winter D A.
Electromyographic amplitude normalization methods: improving their sensitivity as diagnostic tools in gait analysis.
Arch Phys Med Rehabil.
1984;
65 (9)
517-521
2
Ericson M O, Nisell R, Ekholm J.
Quantified electromyography of lower-limb muscles during level walking.
Scandinavian Journal of Rehabilitation Medicine.
1986;
18 (4)
159-163
3
Hesse S.
Locomotor therapy in neurorehabilitation.
Neurorehabilitation.
2001;
16 (3)
133-139
4
Sonntag D, Uhlenbrock D, Bardeleben A, Kading M, Hesse S.
Gait with and without forearm crutches in patients with total hip arthroplasty.
International Journal of Rehabilitation Research.
2000;
23 (3)
233-243
5
Luttmann A, Jäger M, Sökeland J, Laurig W.
Electromyographical study on surgeons in urology. II. Determination of muscular fatigue.
Ergonomics.
1996;
39 (2)
298-313
6
Kankaanpaa M, Taimela S, Webber C L, Airaksinen O, Hänninen O.
Lumbar paraspinal muscle fatigability in repetitive isoinertial loading: EMG spectral indices, Borg scale and endurance time.
Eur J Appl Physiol.
1997;
76 (3)
236-242
7
Morlock M M, Bonin V, Muller G, Schneider E.
Trunk muscle fatigue and associated EMG changes during a dynamic iso-inertial test.
Eur J Appl Physiol.
1997;
76 (1)
75-80
8
Lawrence J H, Luca C J de.
Myoelectric signal versus force relationship in different human muscles.
J Appl Physiol.
1983;
54 (6)
1653-1659
9 Basmajian J V, Luca C J de. Muscles Alive. 5 ed. Baltimoore, London, Sydney; Williams and Wilkins 1985
10
Solomonow M, Baratta R, Shoji H, D'Ambrosia R.
The EMG-force relationships of skeletal muscle; dependence on contraction rate, and motor units control strategy.
Electromyogr Clin Neurophysiol.
1990;
30 (3)
141-152
11
Gandevia S C, Enoka R M, McComas A J, Stuart D G, Thomas C K.
Neurobiology of muscle fatigue. Advances and issues.
Adv Exp Med Biol.
1995;
384
515-525
12
Graven Nielsen T, Svensson P, Arendt Nielsen L.
Effects of experimental muscle pain on muscle activity and co-ordination during static and dynamic motor function.
Electroencephalogr Clin Neurophysiol.
1997;
105 (2)
156-164
13
McNair P J, Depledge J, Brettkelly M, Stanley S N.
Verbal encouragement: effects on maximum effort voluntary muscle action.
Br J Sports Med.
1996;
30 (3)
243-245
14
Spudich J A, Huxley H E, Finch J T.
Regulation of skeletal muscle contraction. II. Structural studies of the interaction of the tropomyosin-troponin complex with actin.
Journal of Molecular Biology.
1972;
72 (3)
619-632
15
Linari M, Dobbie I, Reconditi M, Koubassova N, Irving M, Piazzesi G, Lombardi V.
The stiffness of skeletal muscle in isometric contraction and rigor: the fraction of myosin heads bound to actin.
Biophysical Journal.
1998;
74 (5)
2459-2473
16
Ilebekk A, Kiil F.
Cardiac performance: significance of the Frank-Starling mechanism at low inotropy.
Scandinavian Journal of Clinical & Laboratory Investigation.
1978;
38 (5)
407-413
17
Barnes G E, Chevis B C, Granger H J.
Regulation of cardiac output during rapid volume loading.
American Journal of Physiology.
1979;
237 (3)
R197-202
18
Mangano D T, Dyke D C van, Ellis R J.
The effect of increasing preload on ventricular output and ejection in man. Limitations of the Frank-Starling Mechanism.
Circulation.
1980;
62 (3)
535-541
19 Luca C J de, Knaflitz M. Surface Electromyography: What's New?. Turin; C.L.U.T 1992
20 Kapandji I A. Funktionelle Anatomie der Gelenke. Stuttgart; Enke 1984
21 Lohse H, Ludwig R, Röhr M. Statistische Verfahren für Psychologen, Pädagogen und Soziologen. Berlin; Volk und Wissen 1982
22
Lehman G J, McGill S M.
The importance of normalization in the interpretation of surface electromyography: a proof of principle.
J Manipulative Physiol Ther.
1999;
22 (7)
444-446
23
Rassier D E, MacIntosh B R, Herzog W.
Length dependence of active force production in skeletal muscle.
Journal of Applied Physiology.
1999;
86 (5)
1445-1457
24
Maganaris C N.
Force-length characteristics of in vivo human skeletal muscle.
Acta Physiol Scand.
2001;
172 (4)
279-285
25
Zedka M, Kumar S, Narayan Y.
Comparison of surface EMG signals between electrode types, interelectrode distances and electrode orientations in isometric exercise of the erector spinae muscle.
Electromyogr Clin Neurophysiol.
1997;
37 (7)
439-447
26
Mannion A F, Dolan P.
The effects of muscle length and force output on the EMG power spectrum of the erector spinae.
J Electromyogr Kinesiol.
1996;
6 (3)
159-168
27
Kolmerer B, Linke W A.
Towards a molecular understanding of the elasticity of titin.
Circulation Research.
1997;
80 (2)
290-294
28
Clayton J, Benes V, Allen T, Ferguson C, Leonard K, Weber U, Knekt M, Ansorge W, Labeit S, Bullard B. et al .
Differential expression of cardiac titin isoforms and modulation of cellular stiffness.
Journal of Molecular Biology.
2000;
296 (2)
435-448
29
Anders C, Müller S.
Relation between electromyogram and force - dependency from muscle length.
Pflugers Arch.
2004;
447 (Suppl 1)
S155
30
Bergmark A.
Stability of the lumbar spine. A study in mechanical engineering.
Acta Orthop Scand Suppl.
1989;
230
1-54
31
Gibbons S GT, Comerford M J.
Strength versus stability: Part 1: Concept and terms.
Orth Div Rev.
2001;
March/April
21-27
32
Laube W, Weber J, Thue L, Schomacher J.
Persistierende Kraftdefizite nach Hüft-TEP und Kreuzband-OP infolge gestörter Muskelaktivierung.
Manuelle Therapie.
1998;
3/98
120-129
Dr. med. Christoph Anders
Klinikum der FSU Jena · Institut für Pathophysiologie · FB Motorik
07740 Jena
Email: cand@moto.uni-jena.de