Zusammenfassung
Experimentelle Daten lassen einen Zusammenhang zwischen der Verwendung intravenöser Eisenpräparate und mehreren schädlichen Wirkungen in vitro sowie in vivo vermuten. Zu den akuten unerwünschten Nebenwirkungen intravenöser Eisentherapie zählen Rückenschmerz, Übelkeit, Erbrechen, Hypotension und allergische oder gar anaphylaktische Reaktionen. Das Risiko für Infektionen oder Atherosklerose aufgrund des Gebrauchs von intravenösen Eisenpräparaten sind die meist diskutierten Langzeitkomplikationen einer Eisentherapie, die jedoch nach wie vor kontrovers betrachtet werden. Als potenzielle Ursachen der Nebenwirkungen einer Eisentherapie steht die Überladung des Transferrins mit konsekutivem Anstieg des transferrin-ungebundenen Eisenpools im Vordergrund. Die Eisenmoleküle in diesem Pool zirkulieren in Form von niedrig-molekularen Eisenkomplexen nach der hoch dosierten Gabe eines intravenösen Eisenpräparates. Diese Komplexe können zu einer Oxidation von Lipiden, wie am Beispiel vom Anstieg der Malondialdehydkonzentration (MDA) demonstriert wurde, oder aber auch zu Bildung von „advanced oxidation protein products” (AOPP) führen. Eisenkomplexe können außerdem wichtige Funktionen der Granulozyten, zu denen Phagozytose, intrazelluläre Keimabtötung und transendotheliale Migration gehören, beeinträchtigen. Akute sowie chronische Eisenüberladung sind mit einer gestörten Endothelfunktion, somit mit einer reduzierten Gefäßreaktivität assoziiert und können zu einem deutlich erhöhten kardiovaskulären Krankheitsrisiko beitragen. Trotz der andauernden Kontroversen bezüglich Langzeitkomplikationen von Eisen und aller positiven Entwicklungen im Bereich der Verträglichkeit von Eisenpräparaten sollte auch heute die Entscheidung zum intravenösen Eiseneinsatz nach einer kritischen Indikationsstellung erfolgen.
Abstract
Experimental studies show that intravenous iron administration may be associated with several harmful effects in vitro and in vivo. Acute side effects of intravenous iron therapy include back pain, nausea, vomiting, hypotension, and allergic or anaphylactic reactions. Risk for infection and development of atherosclerosis are the two major potential chronic side effects of intravenous iron therapy which are still controversial. Potential mechanisms include an increase of non transferrin bound iron that may circulate in the form of low molecular weight iron complexes following an intravenous administration of iron. This in turn can lead to an enhanced oxidation of plasma lipids as shown by an increase of malondialdehyde or advanced oxidation protein products. Iron complexes impair critical functions of polymorphonuclear-neutrophilic leukocytes including intracellular killing and phagocytosis or transendothelial migration. Acute or chronic iron overload is also associated with disturbed vascular reactivity and may therefore contribute to excess cardiovascular disease risk. Yet more conclusive studies are needed to determine the existence or the extent of risk for infection or atherosclerosis. In spite of the safety of intravenous iron therapy today, it is indispensable to determine a clear indication for this therapy.
Schlüsselwörter
Chronisches Nierenversagen - renale Anämie - intravenöses Eisen - Eisensaccharose - Eisenglukonat - oxidativer Stress
Key words
Chronic renal disease - renal anemia - intravenous iron - iron sucrose - iron gluconate - oxidative stress
References
1
Sunder-Plassmann G, Hörl W H.
Erythropoietin and iron.
Clin Nephrol.
1997;
47
141-157
2
NKF DOQI Work group .
IV. NKF-K/DOQI Clinical Practice Guidelines for Anemia of Chronic Kidney Disease: update 2000.
Am J Kidney Dis.
2001;
37
182-238
3
Working party for European Best Practice Guidelines for the management of anaemia in patients with chronic renal failure: European best practice guidelines for the management of anaemia in patients with chronic renal failure.
Nephrol Dial Transplant.
1999;
14, Suppl 5
1-50
4
Chandler G, Harchowal J, Macdougall I C.
Intravenous iron sucrose: establishing a safe dose.
Am J Kidney Dis.
2001;
38
988-991
5
Yee J, Besarab A.
Iron sucrose: the oldest iron therapy becomes new.
Am J Kidney Dis.
2002;
40
1111-1121
6
Fishbane S, Wagner J.
Sodium ferric gluconate complex in the treatment of iron deficiency for patients on dialysis.
Am J Kidney Dis.
2001;
37
879-883
7
Wyck D B Van, Cavallo G, Spinowitz B S. et al .
Safety and efficacy of iron sucrose in patients sensitive to iron dextran: North American clinical trial.
Am J Kidney Dis.
2000;
36
88-97
8
Richardson D, Bartlett C, Will E J.
Optimizing erythropoietin therapy in hemodialysis patients.
Am J Kidney Dis.
2001;
38
109-117
9
Charytan C, Levin N, Al-Saloum M. et al .
Efficacy and safety of iron sucrose for iron deficiency in patients with dialysis-associated anemia: North American clinical trial.
Am J Kidney Dis.
2001;
37
300-307
10
Coyne D W, Adkinson N F, Nissenson A R. et al .
Sodium ferric gluconate complex in hemodialysis patients. II. Adverse reactions in iron dextran-sensitive and dextran-tolerant patients.
Kidney Int.
2003;
63
217-224
11
Michael B, Coyne D W, Fishbane S. et al .
Sodium ferric gluconate complex in hemodialysis patients: adverse reactions compared to placebo and iron dextran.
Kidney Int.
2002;
61
1830-1839
12
Nissenson A R, Lindsay R M, Swan S. et al .
Sodium ferric gluconate complex in sucrose is safe and effective in hemodialysis patients: North American Clinical Trial.
Am J Kidney Dis.
1999;
33
471-482
13
Sunder-Plassmann G, Hörl W H.
Safety of intravenous injection of iron saccharate in haemodialysis patients.
Nephrol Dial Transplant.
1996;
11
1797-1802
14
Folkert V W, Michael B, Agarwal R. et al .
Chronic use of sodium ferric gluconate complex in hemodialysis patients: safety of higher-dose (> or = 250 mg) administration.
Am J Kidney Dis.
2003;
41
651-657
15
Prasad P D, Ramamoorthy S, Leibach F H, Ganapathy V.
Molecular cloning of the human placental folate transporter.
Biochem Biophys Res Commun.
1995;
206
681-687
16
Walter T, Arredondo S, Arevalo M, Stekel A.
Effect of iron therapy on phagocytosis and bactericidal activity in neutrophils of iron-deficient infants.
Am J Clin Nutr.
1986;
44
877-882
17
Murakawa H, Bland C E, Willis W T, Dallman P R.
Iron deficiency and neutrophil function: different rates of correction of the depressions in oxidative burst and myeloperoxidase activity after iron treatment.
Blood.
1987;
69
1464-1468
18 Hershko C. Iron and Infection. In: Hallberg LAG (eds) Iron Nutrition in Health and Disease. New York; John Libbey & Company 1996: 231-238
19
Silva A de, Atukorala S, Weerasinghe I, Ahluwalia N.
Iron supplementation improves iron status and reduces morbidity in children with or without upper respiratory tract infections: a randomized controlled study in Colombo, Sri Lanka.
Am J Clin Nutr.
2003;
77
234-241
20
Hoen B, Paul-Dauphin A, Hestin D, Kessler M.
EPIBACDIAL: a multicenter prospective study of risk factors for bacteremia in chronic hemodialysis patients.
J Am Soc Nephrol.
1998;
9
869-876
21
Hoen B, Paul-Dauphin A, Kessler M.
Intravenous iron administration does not significantly increase the risk of bacteremia in chronic hemodialysis patients.
Clin Nephrol.
2002;
57
457-461
22
Shah S V, Alam M G.
Role of iron in atherosclerosis.
Am J Kidney Dis.
2003;
41
S80-83
23
Sullivan J L.
Iron therapy and cardiovascular disease.
Kidney Int.
1999;
55, Suppl 69
S135-137
24
Gartside P S, Glueck C J.
The important role of modifiable dietary and behavioral characteristics in the causation and prevention of coronary heart disease hospitalization and mortality: the prospective NHANES I follow-up study.
J Am Coll Nutr.
1995;
14
71-79
25
Corti M C, Guralnik J M, Salive M E. et al .
Serum iron level, coronary artery disease, and all-cause mortality in older men and women.
Am J Cardiol.
1997;
79
120-127
26
Miller M, Hutchins G M.
Hemochromatosis, multiorgan hemosiderosis, and coronary artery disease.
JAMA.
1994;
272
231-233
27
Kooistra M P, Kersting S, Gosriwatana I. et al .
Nontransferrin-bound iron in the plasma of haemodialysis patients after intravenous iron saccharate infusion.
Eur J Clin Invest.
2002;
32, Suppl 1
36-41
28
Rooyakkers T M, Stroes E S, Kooistra M P. et al .
Ferric saccharate induces oxygen radical stress and endothelial dysfunction in vivo.
Eur J Clin Invest.
2002;
32, Suppl 1
9-16
29
Sengoelge S, Rainer V, Kletzmayr J. et al .
Dose-dependent effect of parenteral iron therapy on bleomycin detectable iron in immune apheresis patients.
Kidney Int.
2004;
66
1-8
30
Lim P S, Wei Y H, Yu Y L, Kho B.
Enhanced oxidative stress in haemodialysis patients receiving intravenous iron therapy.
Nephrol Dial Transplant.
1999;
14
2680-2687
31
Roob J M, Khoschsorur G, Tiran A. et al .
Vitamin E attenuates oxidative stress induced by intravenous iron in patients on hemodialysis.
J Am Soc Nephrol.
2000;
11
539-549
Gürkan SengoelgeMD
Division of Nephrology and Dialysis · Department of Medicine III · University of Vienna
Währinger Gürtel 18 - 20
A-1090 Wien, Austria
Phone: +43-1-40400-4391
Fax: +43-1-40400-4392
Email: Guerkan.Sengoelge@univie.ac.at