Zusammenfassung
Fragestellung, Material und Methoden: Analyse des wissenschaftlichen Schrifttums zur experimentellen Wirkung der Ganzkörperhyperthermie auf Entzündungen und Immunreaktionen. Ergebnisse: Zahlreiche Tierexperimente haben den eindeutigen Nachweis erbracht, dass eine sehr intensive Erhöhung der Körpertemperatur (über 41 °C) einen immunsuppressiven Effekt hat und bei iterativer Anwendung sogar zu einer Involution der lymphatischen Organe führen kann. Eine moderate „milde” Hyperthermie (39 - 40, bei kurzer Anwendung auch 41 °C) hingegen wirkt immunstimulierend bzw. -modulierend und fördert verschiedene physiologische Funktionen immunkompetenter Zellen. Beim Einsatz einer intensiven Hyperthermie ist im Tierexperiment auch eine prophylaktische Immunsuppression möglich, die eine spätere Autoimmunerkrankung (z. B. die Adjuvansarthritis der Ratte) abschwächt. Intensive und mäßiggradige Hyperthermie wirken also auf das Immunsystem entgegengesetzt, sodass man von einem „Januskopf” der Hyperthermie sprechen kann. An einer antiphlogistischen Wirkung der Ganzkörperhyperthermie bei chronischen Entzündungen besteht aufgrund tierexperimenteller Untersuchungen kein Zweifel; akute Entzündungen werden (analog zu lokalen Wärmeapplikationen) eher verschlimmert. Bei der Deutung der Hyperthermiewirkungen auf Entzündungen und Immunreaktionen muss man sicher die z. T. dramatischen Veränderungen des Zytokinmilieus durch Wärme berücksichtigen. Schlussfolgerungen: Versucht man mit Vorbehalt die tierexperimentellen Befunde auf therapeutische Aspekte beim Menschen zu übertragen, so wäre ein Vorteil einer antiphlogistischen Hyperthermietherapie darin zu sehen, dass die hohen Temperaturen auch unzugängliche Entzündungsherde erreichen; andererseits ist die Wirkung abhängig von der Art der Entzündung und ihrer aktuellen Aktivität. Eine therapeutische Immunsuppression wäre nur mit sehr hohen Körpertemperaturen möglich, was sich bei oft schwer verlaufenden Autoimmunerkrankungen wegen der Gefahr thermischer Organschädigungen meist verbieten würde. Zu Fragen der therapeutischen Breite, der Wirkungen auf das Zytokinnetzwerk und zur Dosierung besteht im Übrigen deutlicher Forschungsbedarf. Andererseits darf diese traditionelle Therapie nicht im Abfallkorb der Medizingeschichte verschwinden; da im therapeutischen Alltag ständig Hyperthermiemaßnahmen eingesetzt und viele „Heimsaunen” unkontrolliert benutzt werden, bleibt die Physikalische Medizin aufgefordert, sich weiterhin um diese Therapie zu bemühen.
Abstract
Purpose, material and methods: Review of the scientific literature about experimental effects of whole body hyperthermia on immune reactions and inflammations. Results: Numerous animal experiments demonstrated, that an intense elevation of body temperature (above 41 °C) has an immunosuppressive effect and after repeated applications induces an involution of lymphatic organs. However, a moderate hyperthermia of 39 - 40 °C (for a short-time also 41 °C) is immune-stimulating and promotes different physiological functions of immunocompetent cells. Under experimental conditions also a preventive hyperthermia-induced immunosuppression is possible and may inhibit a lateron occurring autoimmune-disease like adjuvant arthritis of rats. Thus, intense and moderate whole body hyperthermia have opposite effects on the immune system. There is no doubt, that hyperthermia has antiphlogistic effects in chronic inflammations whereas acute inflammations, similar to local heating, are aggravated. Trying to interpret these effects of hyperthermia heat-induced changes of the cytokine network seem to be important. Conclusions: Conclusions for therapeutic aspects in men must be drawn with reservation. An advantage of hyperthermia treatment of inflammations could be that all sites of inflammation may be reached. However, therapeutic effects depend on the kind of inflammation and its actual activity. Therapeutic immunosuppression is possible only with very high body temperatures. This would be contraindicated in general autoimmune diseases on behalf of possible additional damage of organs. Furthermore there exist only few informations about therapeutic tolerance, effects on cytokine network and dosage. Nevertheless, traditional hyperthermia treatment should not disappear in the fog of medical history, because many kinds of treatments (hyperthermic water baths, mud baths, sauna, infrared radiation cabins) use hyperthermia still today. Thus, further investigations seem to be necessary as well as controlled therapeutic studies.
Schlüsselwörter
Hyperthermie - Körpertemperatur - Immunreaktionen - Entzündung
Key words
Hyperthermia - body temperature - immune reaction - inflammation
Literatur
1
Argawal S S, Gupta S.
Effect of heat on lymphocytes. IV. Response of subsets of human lymphocytes to mitogens at 37 °C and 40 °C.
Thymus.
1981;
3
43-50
2
Arif A A, Gao L, Davis C D, Helm D S.
Antibody response to heat shock proteins and histopathology in mice infected with Trypanosoma cruzi and maintained at elevated temperature.
J Parasitol.
1999;
85
1089-1099
3
Ashman R B, Nahmias A J.
Enhancement of human lymphocyte responses to phytomitogens in vitro by incubation at elevated temperatures.
Clin Exp Imunol.
1977;
29
446
4
Asaki Y, Iriki M.
Influence of global warming on the health and immunity in the aged (in Japanese).
Global Environ Res.
1998;
2
147-162
5
Banet M, Fischer D, Hartmann K U, Hensel H, Hilling U.
The effect of whole body heat exposure and of cooling the hypothalamus on antibody titre in the rat.
Pflügers Arch.
1981;
391
25-27
6
Becker H, Franz O, Hinckel P, Holzträger H, Federlin K.
Chronischer thermischer Streß moduliert das Immunsystem in der präklinischen Phase des murinen Lupus erythematodes.
Immun Infekt.
1993;
21, Suppl
23-24
7
Bellometti S, Galzigna L.
Serum levels of a prostaglandin and a leukotriene after thermal mud pack therapy.
J Invest Med.
1998;
46
140-145
8
Brandt S, Banet M.
The effect of hypothalamic temperature on the immune response in the rat.
Brain Research Bulletin.
1984;
13
247-251
9
Brenner I, Shek P N, Zamecnik J, Shephard R J.
Stress hormones and the immunological responses to heat and exercise.
Int J Sports Med.
1998;
19
130-143
10
Bühring M.
Die Beeinflussung des Immunsystems durch Thermotherapie.
Z Phys Med Baln Med Klim.
1985;
14
32-45
11
Bühring M, Dyckmans P, Jouck F, Krippner H, Pirlet K.
Immunologische lymphozytäre Reaktion bei mäßigdosierter Hyperthermie.
Med Klin.
1985;
80
77-80
12
Burd R, Dziedzic T S, Xu Y, Caligiuri M A, Subjeck J R, Repasky E A.
Tumor cell apoptosis, lymphocyte recruitment and tumor vascular changes are induced by low temperature, long duration (fever-like) whole body hyperthermia.
J Cell Physiol.
1998;
177
137-147
13
Cechettin M, Bellometti S, Lalli A, Galzigna L.
Serum Interleukin-1-changes in arthrosis patients after mud-pack treatment.
Phys Rehab Kur Med.
1995;
5
92-93
14
Chernykh E I, Yazykov K G, Semke V Y.
Apoptosis in peripheral blood leukocytes induced by hyperthermia and prednisolone in patients with dysadaptation (in process citation).
Bull Exp Biol Med.
2002;
134
531-533
15
Chung N K, Shabbir M, Lim C L.
Cytokine levels in patients with previous heatstroke under heat stress.
Mil Med.
1999;
4
306-310
16
Di Y P, Repasky E A, Subjeck J R.
Distribution of HSP70, protein kinase C, and spectrin is altered in lymphocytes during a fever-like hyperthermia exposure.
J Cell Physiolog.
1997;
172
44-54
17
Dinarello C A, Dempsey R A, Allegretta M. et al .
Inhibitory effects of elevated temperature on human cytokine production and natural killer activity.
Cancer Res.
1986;
46
6236-6241
18
Duff G W, Durum S K.
Fever and immunoregulation: Hyperthermia, Interleukins 1 and 2 and T-cell proliferation.
Yale J Biol med.
1982;
55
437
19
Fabricius H-A, Neumann H, Sahn R, Engelhardt R, Löhr G W.
Klinisch-chemische und immunologische Veränderungen bei Gesunden nach einer einstündigen 40 °C-Ganzkörperhyperthermie.
Klin Wschr.
1978;
56
1049-1056
20
Franci O, Amici A, Margarit R, Merendino N, Piccolella E.
Influence of thermal and dietary stress on immune response of rabbits.
J Anim Sci.
1996;
7
1523-1529
21 Franz O H. Untersuchungen zum Einfluss thermischer Belastungen auf den Verlauf von Autoimmunerkrankungen am Beispiel des murinen Lupus Erythematodes. Inauguraldissertation. Gießen; 2003
22
Fujita K, Tsukidate S, Katayama M, Kikuchi M.
The influence of thermal environment on the immune response of mice. Effects of high ambient temperature.
Jap J Hyg.
1977;
31
693-702
23 Gastl G, Huber C, Herold M, Günther R. In-vivo-Effekt von Hyperthermie auf Zahl, Funktion und Stimulierbarkeit von natürlichen Killerzellen. Gießen; Vortrag am 89. Kongress der Deutschen Gesellschaft für Physikalische Medizin und Rehabilitation 1984
24
Goldsmith M S, Stettiner L.
Thermal influence on the lymphocytic response of cancer patients.
Am J Surg.
1979;
138
668
25
Greeley E H, Helfrich B A, Feuerman L L, Cain C A, Segre M.
Radiant heat-induced hyperthermia in mice: in vivo effects on the immune system.
Int J Hyperthermia.
1992;
8
209-220
26
Gulluoglu B M, Bekraki A, Cerikcioglu N, Soyletir G, Aktan A O.
Immunologic influences of hyperthermia in a rat model of obstructive jaundice.
Dic Dis Sci.
2001;
46
2378-2384
27
Hammami M M, Bouchama A, Al-Sedairy S, Shail E, Al Ohaly Y, Mohamed G E.
Concentrations of soluble tumor necrosis factor and interleukin-6 receptors in heatstroke and heatstress.
Crit Care Med.
1997;
25
1314-1319
28
Hammami M M, Bouchama A, Shail E, Aboul-Enein H, Al-Sedairy S.
Lymphocyte subsets and adhesion molecules expression in heatstroke and heat stress.
J Appl Physiol.
1998;
84
1615-1621
29
Hanson D F.
Fever, temperature, and the immune response.
Ann N Y Acad Sci.
1997;
813
453-464
30
Hasday J D, Bannerman D, Skarya S, Cross A S, Singh I S, Howard D, Drysdale B E, Goldblum S E.
Exposure to febrile temperature modifies endothelial cell response to tumor necrosis factor-alpha.
J Appl Physiol.
2001;
90
90-98
31
Haveman J, Geerdink A G, Rodermond H M.
Cytokine production after whole body and localized hyperthermia.
Int J Hyperthermia.
1996;
12
791-800
32
Hensel H.
Die Funktion des Fiebers im Krankheitsgeschehen.
Z Allg Med.
1981;
57
338-344
33 Hori T, Kaizuka Y, Takaki A, Katafuchi T. Thermal Stress and Immunity. In: Kosaka M, Sugahara T, Schmidt KL, Simon E (eds) Thermotherapy for Neoplasia, Inflammation, and Pain. Tokyo; Springer 2001: 242-251
34
Huang M H, Yang R C, Ding H J, Chai C-Y.
Ultrasound effect on level of stress proteins and arthritic histology in experimental arthritis.
Arch Phys Med Rehabil.
1999;
80
551-556
35
Huang Y H, Haegerstrand A, Frostegard J.
Effects of in vitro hyperthermia on proliferative responses and lymphocyte activity.
Clin Exp Immunol.
1996;
103
61-66
36
Izumi A, Koga S, Maeta M.
Effects of in vitro hyperthermia on murine and human lymphocytes.
Cancer.
1983;
51
2061
37
Jampel H D, Duff G W, Gershon R K, Atkins E, Durum S K.
Fever and immunoregulation. III. Hyperthermia augments the primary in vitro humoral immune response.
J exp Med.
1963;
157
1229
38
Jandali R, Rufeger H, Santoso S, Mueller-Eckhardt C.
Der Einfluss der Umgebungstemperatur auf die Lymphozytenproliferation.
Z Phys Med Baln Med Klim.
1985;
14
46-50
39
Kaizuka Y, Mori T, Hori T.
Effects of temperature on the cytotoxic activity of natural killer cells in the rat spleen.
Jpn J Physiol.
1990;
40
227
40
Kalland T, Dahlquist I.
Effects of in vitro hyperthermia on human natural killer cells.
Cancer Res.
1983;
48
1842-1846
41
Kanda T, Nakano M, Yakojama T, Hoshino Y, Okajima F, Tanaka T, Saito Y, Nagai R, Kobayashi I.
Heat stress aggravates viral myocarditis in mice.
Life Sci.
1999;
64
93-101
42
Kandasamy S B.
Possible involvement of tumor necrosis factor alpha in radiation-induced hyperthermia in rats.
Radiat Res.
1998;
149
27-31
43
Kelly D W, Osborne C A, Evermann J F, Parish S M, Gaskins C T.
Effects of chronic heat and cold stressors on plasma immunoglobulin and mitogen-induced blastogenesis in calves.
J Dairy Sci.
1982;
65
1514-1528
44
Kluger M J.
Is fever beneficial?.
Yale J Biol Med.
1986;
59
89-95
45
Kohn H J.
Animal room temperature affects rejection of skin grafts.
Transplantation.
1973;
15
259
46 Kosaka M, Sugahara T, Schmidt K L, Simon E (eds). Thermotherapy for Neoplasia, Inflammation, and Pain. Tokyo; Springer 2001
47
Leon S A, Asbell S O, Arastu H H, Edelstein G, Packel A J, Sheehan S, Daskal I, Guttmann G G, Santos I.
Effects of hyperthermia on bone. II. Heating of bone in vivo and stimulation of bone growth.
Int J Hyperthermia.
1993;
9
77-87
48
Mansoor S, Spanó M, Baschieri S, Cividalli A, Mosiello L, Doria G.
Effect of in vivo hyperthermia on thymocyte maturation and selection.
Int Immunol.
1992;
4
227-232
49
Manzella J P, Roberts N J jr.
Human macrophage and lymphocyte responses to mitogen stimulation after exposure to influenza virus, ascorbic acid and hyperthermia.
J Immunol.
1979;
123
1940
50
Mitsudo K, Kobayashi M, Tohnai I, Ueda M, Kotani H, Hoshino T.
Electron-microscopic and immunohistochemical studies of Langerhans cells and Thy-1-positive cells in mouse tongue epithelium subjected to local hyperthermia.
Arch Oral Biol.
1995;
40
533-538
51
Mulhall K J, McLaughlin R, Kay E, Kiely P, Bouchier-Hayes D, Murray P.
Thermal preconditioning prevents peritendinous adhesions and inflammation.
Clin Orthop.
2002;
405
258-266
52 Nagai M, Iriki M. Changes in immune activities by heat stress. In: Kosaka M, Sugahara T, Schmidt KL, Simon E (eds) Thermotherapy for Neoplasia, Inflammation, and Pain. Tokyo; Springer 2001: 266-270
53
Oglesbee M J, Diehl K, Crawford E, Kearns R, Krakowka S.
Whole body hyperthermia: effects upon canine immune and hemostatic functions.
Vet Imunol Immunpathol.
1999;
69
185-199
54 Ohtsuka K, Hata M. Induction of heat-shock proteins and their biological functions. In: Kosaka M, Sugahara T, Schmidt KL, Simon E (eds) Thermotherapy for Neoplasia, Inflammation, and Pain. Tokyo; Springer 2001: 328-333
55
Olszewski W L, Grzelak I, Ziolkowska A, Engeset A.
Effect of local hyperthermia on lymph immune cells and lymphokines of normal human skin.
J Surg Oncol.
1989;
41
109-116
56
Ostberg J R, Taylor S L, Baumann H, Repasky E A.
Regulatory effects of fever-range whole-body hyperthermia on the LPS-induced acute inflammatory response.
J Leukoc Biol.
2000;
68
815-820
57
Otremski I, Erling G, Cohen Z, Newman R J.
The effect of hyperthermia (42.5 °C) on zymosan-induced synovitis of the knee.
Brit J Rheum.
1994;
33
721-723
58
Ozveri E S, Bekraki A, Cingi A, Yuksel M, Demiralp E E, Yegen B C, Aktan A O.
The effect of hyperthermic preconditioning on the immune system in rat peritonitis.
Intensive Care Med.
1999;
25
1155-1159
59
Pakin Y V, Pisarenko V G, Starkov V N.
The effects of temperature and incubation period an age changes in PHA-blast transformation of lymphocytes: Experiment and mathematical model.
Exp Geront.
1978;
13
447
60
Purrott R J, Fulpes N, Lloyd D C.
The influence of incubation temperature on the rate of human lymphocyte proliferation in vitro.
Experientia.
1981;
37
407
61
Roberts N J.
Temperature and host defense.
Microbiological Rew.
1979;
43
241-259
62
Roberts J R, Steigbigel N J, Steigbigel R T.
Hyperthermia and human leucocyte functions: Effects on response of lymphocytes to mitogen and antigen and bactericidal capacity of monocytes and neutrophils.
Infect Immun.
1977;
18
673
63
Robins H I, Grosen E, Katschinski D M. et al .
Whole body hyperthermia induction of soluble tumor necrosis factor receptors: implications for rheumatoid diseases.
J Rheumatol.
1999;
26
2513-2516
64
Rodbard D, Wachslicht-Robard H, Rodbard S.
Temperature: A critical factor determining localization and natural history of infectious, metabolic and immunological diseases.
Perspect Biol Med.
1980;
23
439
65
Roszkowski W, Szmigielski S, Janiak M, Wrembel J K.
Effect of moderate (40 °C) and intensive (43 °C) hyperthermia on spleen, lymph-node and thymus-derived murine lymphocytes in vitro.
Immunbiol.
1979;
156
429-440
66
Saririan K, Nickerson D A.
Enhancement of murine in vitro antibody formation by hyperthermia.
Cell Imunol.
1982;
74
306
67
Sawaji Y, Sato T, Takeuchi A, Hirata M, Ito A.
Anti-angiogenic action of hyperthermia by suppressing gene expression and production of tumor-derived vascular endothelial growth factor in vivo and in vitro.
Br J Cancer.
2002;
86
1597-1603
68
Schmidt K L, Ott V R.
Immunreaktionen bei hoher Körpertemperatur.
Med Welt.
1974;
25
1963-1968
69 Schmidt K L. Effect of hyperthermia on granulation tissue in rats. In: Streffer Ch (ed) Cancer therapy by hyperthermia and radiation. Baltimore, Munich; Urban & Schwarzenberg 1978: 227-228
70
Schmidt K L, Ott V R, Röcher G, Schaller H.
Heat, cold and inflammation.
Z Rheumatol.
1979;
38
391-404
71
Schmidt K L, Dettmer J, Mueller-Eckhardt C.
Körpertemperatur und Immunreaktionen: Die Wirkung einer Ganzkörper-Hyperthermie auf die Stimulierbarkeit der Lymphozyten durch Mitogene.
Z Phys Med Baln Med Klimatol.
1983;
12
109-114
72 Schmidt K L. Hyperthermie und Fieber. Wirkungen bei Mensch und Tier. Klinik, Pathologie, Immunologie, Wirkung auf Entzündungen. Stuttgart; Hippokrates Verlag 1987
73
Schmidt K L.
Whole body hyperthermia induction of soluble tumor necrosis factor receptors: Implications for rheumatoid diseases. (Letter to the editor.)
J Rheumatol.
2000;
27
2281
74 Schmidt K L, Simon E. Thermotherapy of pain, trauma and inflammatory and degenerative rheumatic diseases. In: Kosaka M, Sugahara T, Schmidt KL, Simon E (eds) Thermotherapy for Neoplasia, Inflammation, and Pain. Tokyo; Springer 2001: 527-539
75
Shah A, Unger E, Bain M D, Bruce R, Bodkin J, Ginnetti J, Wang W C, Seon B, Stewart C C, Evans S S.
Cytokine and adhesion molecule expression in primary human endothelial cells stimulated with fever-range hyperthermia.
Int J Hyperthermia.
2002;
18
534-551
76
Shen R N, Lu L, Young P, Shidnia H, Hornback N B, Broxmeyer H E.
Influence of elevated temperature on natural killer cell activity, lymphokine-activated killer cell activity and lectin-dependent cytotoxicity of human umbilical cord blood and adult blood cells.
Int J Radiat Oncol Biol Phys.
1994;
29
821-826
77
Smith J B, Knowlton R P, Agarwal S S.
Human lymphocyte responses are enhanced by culture at 40 °C.
J Immunol.
1978;
121
691
78
Sobieska M, Stratz T, Samborski W, Hrycaj P, Mennet P, Müller W.
Letter to the editor. Interleukin-6 (IL-6) after whole body cryotherapy and local hot mud pack treatment.
PMR.
1993;
3
205
79
Tomasovic S P, Shan L, Klostergaard J.
Comparative in vitro studies of the potentiation of tumor necrosis factor (TNF)-α, TNF-β, and TNF-SAM2 cytotoxicity by hyperthermia.
J Immunother.
1992;
11
85-92
80 Thielen G. Reaktionen ausgewählter immunologischer, hämatologischer und endokrinologischer Parameter unter milder Hyperthermie im Überwärmungsbad bei Patienten mit ankylosierender Spondylitis und bei Gesunden. Inaugural-Dissertation. Gießen; 1998
81
Tütüncü Z N, Turan M, Barut A, Yüzbasioglu N, Karagülle M Z.
Changes in TNFα plasma levels in osteoarthritic patients under balneotherapy with acratothermal water.
Phys Rehab Kur Med.
1996;
6
80-82
82
Wang W C, Goldman L M, Schleider D M, Appenheimer M M, Subjeck J R, Repasky E A, Evans S S.
Fever-range hyperthermia enhances L-Selectin-dependent adhesion of lymphocytes to vascular endothelium.
J Immunol.
1998;
15
961-969
83
Wang X Y, Ostberg J R, Repasky E A.
Effect of fever-like whole-body hyperthermia on lymphocyte spectrin distribution, protein kinase C activity, and uropod formation.
J Immunol.
1999;
162
3378-3387
84 Watanabe T, Murakami N. Fever and related host defense responses. In: Kosaka M, Sugahara T, Schmidt KL, Simon E (eds) Thermotherapy for Neoplasia, Inflammation, and Pain. Tokyo; Springer 2001: 313-320
85
Yamamoto S, Ando M, Suzuki E.
High-temperature effects of antibody response to viral antigen in mice.
Exp Anim.
1999;
48
9-14
86
Yoshioka A, Miyachi Y, Imamura S, Hiraoka M, Jo S, Abe M.
Suppression of contact sensitivity by local hyperthermia treatment due to reduced Langerhans cell population in mice.
Br J Dermatol.
1989;
120
493-501
87
Yoshioka A, Miyachi Y, Toda K, Imamura S, Hiraoka M, Abe M.
Effects of local hyperthermia on natural killer activity in mice.
Int J Hyperthermia.
1990;
6
261-267
88 Zeisberger E, Roth J, Kluger M J. Interactions between the immune system and the hypothalamic neuroendocrine system during fever and endogenous antipyresis. In: Pleschka E, Gerstberger R (eds) Integrative and cellular aspects of autonomic functions: temperature and osmoregulation. Paris; John Libbey Eurotext 1994: 181-190
89
Zeisberger E.
From humoral fever to neuroimmunological control of fever.
J Thermal biology.
1999;
24
287-326
90
Zellner M, Hergovics N, Roth E, Jilma B, Spittler A, Oehler R.
Human monocyte stimulation by experimental whole body hyperthermia.
Wien Klin Wschr.
2002;
114
102-107
Prof. Dr. med. Klaus L. Schmidt
Kerckhoff-Klinik · Abteilung Rheumatologie
Benekestraße 2 - 8
61231 Bad Nauheim
Email: Klaus.L.Schmidt@rheuma.med.uni-giessen.de