Zusammenfassung
Ziel ist die Integration eines Multiantennen-Applikators für die Teilkörperhyperthermie (BSD-2000/3D) in einen 1,5 T MR-Tomographen (Siemens Magnetom Symphony), um ein nicht-invasives MR-Monitoring in Echtzeit zu ermöglichen und damit die Hyperthermie sicherer und effektiver durchführen zu können. Die Hyperthermie-Lagerungseinheit wird von der Rückseite der MR-Gantry mechanisch angekoppelt und die Körperspule zum Monitoring eingesetzt. Dazu mussten Hyperthermie-Antennensystem (100 MHz, 1550 W) und MR-Empfänger (63,9 MHz) hochfrequenzmäßig (Filter) und elektromagnetisch entkoppelt werden. Die Weiterverarbeitung der MR-Datensätze erfolgt in einem eigens entwickelten Hyperthermieplanungssystem. Ein Simultanbetrieb von Radiofrequenz-Hyperthermie und MR-System ist bei klinisch relevanten Leistungen möglich. MR-Datensätze werden zur diagnostischen Tumordarstellung (Spin-Echo-Standardsequenzen), zur Planung der Hyperthermie (T1 -gewichtete Gradienten-Echo-Sequenzen in Gegen- und Gleichphasentechnik) und zur Temperaturdarstellung nach der Protonen-Resonanzfrequenz-Methode (PRF-Methode, Phasenauswertung einer Gradienten-Echo-Sequenz mit langer Echozeit) eingesetzt. Bei 33 Patienten mit fortgeschrittenen pelvinen und abdominellen Tumoren wurden über 150 Hyperthermiebehandlungen unter MR-Monitoring durchgeführt. Bei 70 % der Patienten gelang eine Visualisierung temperatursensitiver Daten während der Therapiezeit. Die ausgewerteten Differenzbilder stellen eine Überlagerung der tatsächlichen Temperaturerhöhung und einer (temperaturinduzierten) Perfusionserhöhung dar. Dieser Hybridansatz ermöglicht es, die Teilkörperhyperthermie als MR-gesteuerte Intervention für die Radiologie zu entwickeln.
Abstract
Objective of this study is the integration of a multiantenna applicator for part-body hyperthermia (BSD 2000/3D) in a 1.5 T MR-tomograph (Siemens Magnetom Symphony) in order to perform noninvasive MR monitoring in real time to increase safety and effectiveness of heat treatments. The positioning unit is mechanically coupled to the MR gantry from the back side and the body coil is utilised for imaging. For that purpose, the hyperthermia antenna system (100 MHz, 1.500 W) and the MR receiver (63.9 MHs) have to be decoupled in terms of high frequency (filter) and electromagnetically (emc). The processing of MR data sets is performed in a hyperthermia planning system. A simultaneous operation of radiofrequency hyperthermia and MR system is possible at clinically relevant power levels. MR imaging is used for tumor diagnostics (standard spin echo sequences), for hyperthermia planning (T1-weighted gradient echo sequences in equal- and opposed-phase techniques), and for temperature measurements according to the proton resonance frequency method (PRF method, phase evaluation registration using a gradient echo sequence with long echo time). In 33 patients with advanced pelvic and abdominal tumors we performed 150 heat sessions under MR monitoring. For 70 % of these patients a visualisation of temperature sensitive data during treatment was possible. The evaluated difference images represent a superposition of real temperature increase and a (temperature-induced) perfusion elevation. The hyprid approach renders development of part body hyperthermia possible as an MR-controlled intervention in radiology.
Key words
Noninvasive MR-thermometry - part body hyperthermia - multi-antenna applicator - MR-controlled intervention
Literatur
1 Hall E J. Radiobiology for the Radiologist. Philadelphia: Lippincott 2000
2 Wust P, Hehr T. Hyperthermie mit Strahlentherapie oder Chemotherapie. In: Bamberg M, Molls M, Sack H (Hrsg) Radioonkologie. München, Zuckschwerdt-Verlag 2003: 98-114
3
Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H.
The Cellular and molecular basis of hyperthermia.
Crit Rev Oncol Hematol.
2002;
43
33 - 56
4
Zee J van der.
Heating the patient: a promising approach?.
Annals Surg.
2002;
13
1173-1184
5
Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag P M.
Hyperthermia in a combined treatment of cancer.
The Lancet Oncology.
2002;
3
487-497
6
Issels R, Abdel-Rahman S, Wendtner C -M.
Neoadjuvant chemotherapy combined with regional hyperthermia (RHT) for locally advanced primary or recurrent high-risk adult soft-tissue sarcomas (STS) of adults: long-term results of a phase II study.
Eur J Cancer.
2001;
37
1599-1608
7
Prosnitz L R, Maguire P, Anderson J M. et al .
The treatment of high-grade soft tissue sarcomas with preoperative thermoradiotherapy.
Int J Radiat Oncol Biol J Surg Oncol.
1999;
45
(4)
941-949
8
Rau B, Wust P, Hohenberger P, Löffel J, Hünerbein M, Below C, Gellermann J, Speidel A, Vogl T, Riess H, Felix R, Schlag P M.
Preoperative hyperthermia combined with radiochemotherapy in locally advanced rectal cancer. A phase II clinical trial.
Annals Surg.
1998;
227
380-389
9
Zee J Van der, Gonzalez Gonzalez D, Rhoon G C van, Dijk J D van, Putten W L van, Hart A A.
Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group.
Lancet.
2000;
355
1119-1125
10
Vogl T h, Müller P K, Hammerstingl R, Weinhold N, Mack M G, Philipp C, Deimling M, Beuthan J, Pegios W, Riess H, Lemmens H P, Felix R.
Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: technique and prospective results.
Radiology.
1995;
196
257-265
11
Parker D L, Smith P, Sheldon P, Crooks L E, Fussel L.
Temperature distribution measurements in two-dimensional NMR imaging.
Med Phys.
1983;
10
321-325
12
Samulski T, Macfall J, Zhang Y, Grant W, Charles C.
Noninvasive thermometry using magnetic resonance diffusion imaging: Potential for application in hyperthermic oncology.
Int J Hyperthermia.
1992;
8
819-829
13
Poorter J De, Wagter C De, Deene Y De, Thomsen C, Stahlberg F, Achten E.
Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: In vivo results in human muscle.
Magn Reson Med.
1995;
33
74-81
14
Wlodarczyk W, Hentschel M, Wust P, Nöske R, Hosten N, Rinneberg H, Felix R.
Comparison of magnetic resonance methods for mapping of small temperature changes.
Phys Med Biol.
1999;
44
607-624
15
Hentschel M, Wust P, Wlodarczyk W, Frenzel T, Schründer S, Hosten N, Felix R.
Noninvasive MR thermometry by 2D spectroscopic imaging of the Pr[MOE-DO3A] complex.
Int J Hyperthermia.
1998;
14
479-493
16
Young I R, Hand J W, Oatridge A, Prior M V.
Modeling and observation of temperature changes in vivo using MRI.
Magn Reson Med.
1994;
32
358-369
17
Young I R, Hajnal J V, Roberts I G, Ling J X, Hill-Cottingham R J, Oatridge A, Wilson J A.
An evaluation of the effects of susceptibility changes on the water chemical shift method of temperature measurement in human peripheral muscle.
MRM.
1996;
36
366-374
18
Delannoy J, LeBihan D, Hoult D I, Levin R L.
Hyperthermia system combined with a magnetic resonance imaging unit.
Med Phys Biol.
1990;
12
855-860
19
Carter D L, MacFall J R, Clegg S T, Wan X, Prescott D M, Charles H C, Samulski T V.
Magnetic resonance thermography during hyperthermia for human high-grade sarcome.
Int J Radiat Oncol Biol Phys.
1998;
40
815-822
20
Peller M, Löffler R, Baur A ., Turner P, Abdel-Rahman S, Futschik G, Santl M, Hiddemann W, Reiser M, Issels R.
MRT-gesteuerte regionale Tiefenhyperthermie.
Radiologe.
1999;
39
756-763
21
Wust P, Fähling H, Wlodarczyk W, Seebass M, Gellermann J, Deuflhard P, Nadobny J.
Antenna arrays in the SIGMA-Eye applicator: Interactions and transforming networks.
Med Phys.
2001;
28
1793-1805
22 Nadobny J, Fähling H, Wlodarczyk W, Gellermann J, Seebass M, Deuflhard P, Hagmann M, Wust P. Experimental and numerical investigations of the accuracy of amplitude and phase settings in a 3-D hyperthermia applicator using different models of feeding networks. IEEE Trans Biomed Eng 2002 49: 1348-1359
23
Seebass M, Beck R, Gellermann J, Nadobny J, Wust P.
Electromagnetic phased arrays for regional hyperthermia - optimal frequency and antenna arrangement.
Int J Hyperthermia .
2001;
17
321-336
24 Stalling D, Seebass M, Hege H C. AMIRA 2.2. User's Guide and Reference Manual. Konrad-Zuse-Zentrum für Informationstechnologie, Takustr. 7, 14195 Berlin 2000
25 Seebass M, Stalling D, Hege H C. HyperPlan. User's Guide and Reference Manual. Konrad-Zuse-Zentrum für Informationstechnologie, Takustr. 7, 14195 Berlin 1999
26
Gellermann J, Wust P, Stalling D, Seebass M, Nadobny J, Beck R, Beier J, Hege H C, Deuflhard P, Felix R.
Clinical evaluation and verification of the hyperthermia treatment planning system HyperPlan.
Int J Radiat Oncol Biol Phys.
2000;
47
1145-1156
27 Sreenivasa G, Gellermann J, Nadobny J, Schlag P M, Deuflhard P, Felix R, Wust P. Clinical application of the hyperthermia treatment planning system HyperPlan - comparison of algorithms and clinical observables. Int J Radiat Oncol Biol Phys 2003 55: 407-419
28
Wust P, Fähling H, Jordan A, Nadobny J, Seebass M, Felix R.
Development and testing of SAR-visualizing phantoms for quality control in RF hyperthermia.
Int J Hyperthermia.
1994;
10
127-142
29
Wust P, Gellermann J, Beier J, Wegner S, Tilly W, Tröger J, Stalling D, Oswald H, Hege H C, Deuflhard P, Felix R.
Evaluation of segmentation tools for generation of patient models in radiofrequency hyperthermia.
Phys Med Biol.
1998;
43
3295-3307
30
Tilly W, Wust P, Rau B, Harder C, Gellermann J, Schlag P M, Budach V, Felix R.
Temperature data and specific absorption rates in pelvic tumours: predictive factors and correlations.
Int J Hyperthermia.
2001;
17
172-188
Prof. Dr. Peter Wust
Charité, Campus Virchow-Klinikum, Klinik für Strahlenheilkunde
Augustenburger Platz 1
13353 Berlin
Phone: 030/450/557202
Fax: 030/450/557979
Email: peter.wust@charite.de