RSS-Feed abonnieren
DOI: 10.1055/s-2004-812753
© Georg Thieme Verlag Stuttgart · New York
Multimodal Imaging in the Elastase-Induced Aneurysm Model in Rabbits: A Comparative Study Using Serial DSA, MRA and CTA
Multimodale Bildgebung am tierexperimentellen AneurysmamodellPublikationsverlauf
Publikationsdatum:
16. April 2004 (online)
Zusammenfassung
Ziel: Evaluierung der Wertigkeit verschiedener Bildgebungsmodalitäten in der Bestimmung der Aneurysmagröße am Elastase-Aneurysmamodell am Kaninchen. Material/Methode: Bei 8 Chinchilla-Kaninchen wurde durch endoluminale Elastaseinkubation ein Aneurysma induziert. Alle Tiere wurden mit intravenöser DSA (IVDSA), kontrastverstärkter (CEMRA) und „time-of-flight”-MRA (TOF) nach 14 Tagen, 4 Wochen und 3 Monaten untersucht und es wurde jeweils die Aneurysmagröße (Höhe: H, Weite: W, Halsweite: N) bestimmt. Nach 3 Monaten wurden zusätzlich eine intraarterielle DSA (IADSA) und eine CT-Angiographie durchgeführt. Ergebnisse: In der IVDSA nach 2 Wochen betrugen die mittlere Aneurysmahöhe (H) 6,2 mm, -weite (W) 2,8 mm und Halsweite (N) 2,7 mm. Es zeigte sich keine statistisch signifikante Änderung der Aneurysmagröße nach 4 Wochen (CEMRA: H: 5,4, W: 2,4, N: 2,4; TOF: H: 5,7, W: 2,4, N: 2,7) bzw. 3 Monaten (CEMRA: H: 5,8, W: 2,6, N: 2,6; TOF: H: 6,9, W: 2,8, N: 3,0). Die Aneurysmagröße betrug in der IADSA (H: 6,2, W: 3,0, N: 2,7) mit guter Korrelation zur CTA (r = 0,94). Die TOF-MRA war in der Darstellung der Aneurysmawand überlegen. Schlussfolgerungen: Verlaufskontrollen mit DSA, MRA und CTA sind am experimentellen Aneurysmamodell möglich und zeigen eine gute Korrelation. MRA und CTA eignen sich im Rahmen der nicht-invasiven präinterventionellen Therapieplanung zur Bestimmung der Aneurysmagröße.
Abstract
Background and Purpose: The elastase-induced aneurysm model in rabbits has proved to be suitable for testing new endovascular occlusion devices. The purpose of this study was to evaluate different imaging modalities for the depiction of anatomy and size of elastase-induced aneurysms and for serial follow-up imaging. Materials and Methods: Elastase-induced aneurysms were created in eight Chinchilla bastard rabbits by endoluminal incubation of porcine elastase. Serial imaging was performed using intravenous DSA (IVDSA), contrast-enhanced MRA (CEMRA), and time-of-flight MRA (TOF) 14 days, 4 weeks and 3 months after aneurysm creation. Intraarterial DSA (IADSA) and CT angiography (CTA) were performed after 3 months. Aneurysm size and geometry (height H, width W, neck width N) were compared. Results: On IVDSA after two weeks mean aneurysm height was 6.2 mm (range 2.8 - 11.0 mm), mean aneurysm width was 2.8 mm (range 2.0 - 4.2 mm) and mean aneurysm neck width was 2.7 mm (range 2.0 - 4.2 mm). We did not observed any statistically significant change in aneurysm dimensions during follow-up at 4 weeks (CEMRA: H: 5.4, W: 2.4, N: 2.4; TOF: H: 5.7, W: 2.4, N: 2.7) and 3 months (CEMRA: H: 5.8, W: 2.6, N: 2.6; TOF: H: 6.9, W: 2.8, N: 3.0). Aneurysm dimensions could be best seen on IADSA (H: 6.2, W: 3.0, N: 2.7) with good correlation to CTA (r = 0.94; H: 6.1, W: 2.8, N: 2.6), CE-MRA (r = 0.92), and TOF (r = 0.97). TOF was superior to CEMRA in delineating the aneurysm wall. Conclusions: Serial imaging using MRA, CTA or intravenous and intraarterial angiography is feasible in the elastase-induced aneurysm model. Contrast-enhanced MRA, TOF-MRA and CTA showed good correlation to IADSA and are all suitable for non-invasive pretherapeutic measurement of aneurysm size.
Key words
Aneurysm - animal - intracranial - CT - MR
References
- 1 Forrest M D, O’Reilly G V. Production of experimental aneurysms at a surgically created arterial bifurcation. AJNR Am J Neuroradiol. 1989; 10 400-402
- 2 Guglielmi G, Ji C, Massoud T F. et al . Experimental saccular aneurysms. II. A new model in swine. Neuroradiology. 1994; 36 547-550
- 3 Massoud T F, Guglielmi G, Ji C. et al . Experimental saccular aneurysms. I. Review of surgically-constructed models and their laboratory applications. Neuroradiology. 1994; 36 537-546
- 4 Spetzger U, Reul J, Weis J. et al . Microsurgically produced bifurcation aneurysms in a rabbit model for endovascular coil embolization. J Neurosurg. 1996; 85 488-495
- 5 Bavinzski G, al-Schameri A, Killer M. et al . Experimental bifurcation aneurysm: a model for in vivo evaluation of endovascular techniques. Minim Invasive Neurosurg. 1998; 41 129-132
- 6 Kallmes D F, Altes T A, Vincent D A. et al . Experimental side-wall aneurysms: a natural history study. Neuroradiology. 1999; 41 338-341
- 7 Pile-Spellman J, Wu J. Coil embolization of aneurysms: angiographic and histologic changes. AJNR Am J Neuroradiol. 1997; 18 43-44
- 8 Cloft H J, Altes T A, Marx W F. et al . Endovascular creation of an in vivo bifurcation aneurysm model in rabbits. Radiology. 1999; 213 223-228
- 9 Altes T A, Cloft H J, Short J G. et al . 1999 ARRS Executive Council Award. Creation of saccular aneurysms in the rabbit: a model suitable for testing endovascular devices. American Roentgen Ray Society. AJR Am J Roentgenol. 2000; 174 349-354
- 10 Fujiwara N H, Cloft H J, Marx W F. et al . Serial angiography in an elastase-induced aneurysm model in rabbits: evidence for progressive aneurysm enlargement after creation. AJNR Am J Neuroradiol. 2001; 22 698-703
- 11 Kallmes D F, Fujiwara N H, Berr S S. et al . Elastase-induced saccular aneurysms in rabbits: a dose-escalation study. AJNR Am J Neuroradiol. 2002; 23 295-298
- 12 Short J G, Fujiwara N H, Marx W F. et al . Elastase-induced saccular aneurysms in rabbits: comparison of geometric features with those of human aneurysms. AJNR Am J Neuroradiol. 2001; 22 1833-1837
- 13 Molyneux A, Kerr R, Stratton I. et al . International Subarachnoid Aneurysm Trial (ISAT) Collaborative Group. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet. 2002; 26 1267-1274
- 14 Masaryk A M, Frayne R, Unal O. et al . Utility of CT angiography and MR angiography for the follow-up of experimental aneurysms treated with stents or Guglielmi detachable coils. AJNR Am J Neuroradiol. 2000; 21 1523-1531
- 15 Adams W M, Laitt R D, Jackson A. The role of MR angiography in the pretreatment assessment of intracranial aneurysms: a comparative study. AJNR Am J Neuroradiol. 2000; 21 1618-1628
- 16 Okahara M, Kiyosue H, Yamashita M. et al . Diagnostic accuracy of magnetic resonance angiography for cerebral aneurysms in correlation with 3D-digital subtraction angiographic images: a study of 133 aneurysms. Stroke. 2002; 33 1803-1808
- 17 Korogi Y, Takahashi M, Mabuchi N. et al . Intracranial aneurysms: diagnostic accuracy of MR angiography with evaluation of maximum intensity projection and source images. Radiology. 1996; 199 199-207
- 18 Korogi Y, Takahashi M, Katada K. et al . Intracranial aneurysms: detection with three-dimensional CT angiography with volume rendering - comparison with conventional angiographic and surgical findings. Radiology. 1999; 211 497-506
- 19 White P M, Wardlaw J M, Easton V. Can noninvasive imaging accurately depict intracranial aneurysms? A systematic review. Radiology. 2000; 217 361-370
- 20 Nederkoorn P J, Elgersma O E, Mali W P. et al . Overestimation of carotid artery stenosis with magnetic resonance angiography compared with digital subtraction angiography. J Vasc Surg. 2002; 36 806-813
- 21 Anidjar S, Salzmann J L, Gentric D. et al . Elastase-induced experimental aneurysms in rats. Circulation. 1990; 82 973-981
- 22 Wakhloo A K, Schellhammer F, de Vries J. et al . Self-expanding and balloon-expandable stents in the treatment of carotid aneurysms: an experimental study in a canine model. AJNR Am J Neuroradiol. 1994; 15 493-502
- 23 Fujiwara N H, Kallmes D F. Healing response in elastase-induced rabbit aneurysms after embolization with a new platinum coil system. AJNR Am J Neuroradiol. 2002; 23 1137-1144
- 24 de Gast A N, Altes T A, Marx W F. et al . Transforming growth factor beta-coated platinum coils for endovascular treatment of aneurysms: an animal study. Neurosurgery. 2001; 49 690-694; discussion 694 - 696
- 25 Kallmes D F, Borland M K, Cloft H J. et al . In vitro proliferation and adhesion of basic fibroblast growth factor-producing fibroblasts on platinum coils. Radiology. 1998; 206 237-243
- 26 Krings T, Hans F J, Moller-Hartmann W. et al . Time-of-flight-, phase contrast and contrast enhanced magnetic resonance angiography for pre-interventional determination of aneurysm size, configuration, and neck morphology in an aneurysm model in rabbits. Neurosci Lett. 2002; 326 46-50
- 27 Chung T S, Joo J Y, Lee S K. et al . Evaluation of cerebral aneurysms with high-resolution MR angiography using a section-interpolation technique: correlation with digital subtraction angiography. AJNR Am J Neuroradiol. 1999; 20 229-235
- 28 Kallmes D F, Fujiwara N H. New expandable hydrogel-platinum coil hybrid device for aneurysm embolization. AJNR Am J Neuroradiol. 2002; 23 1580-1588
- 29 Graves V B, Perl J 2nd, Strother C M. et al . Endovascular occlusion of the carotid or vertebral artery with temporary proximal flow arrest and microcoils: clinical results. AJNR Am J Neuroradiol. 1997; 18 1201-1206
- 30 Metens T, Rio F, Baleriaux D. et al . Intracranial aneurysms: detection with gadolinium-enhanced dynamic three-dimensional MR angiography - initial results. Radiology. 2000; 216 39-46
- 31 Bosmans H, Marchal G. Contrast-enhanced MR angiography. Radiologe. 1996; 36 115-123
Arnd Doerfler, M.D.
Department of Neuroradiology, Institute of Diagnostic and Interventional Radiology, University of Essen Medical School
Hufelandstraße 55
45122 Essen
Germany
eMail: arnd.doerfler@uni-essen.de