Subscribe to RSS
DOI: 10.1055/s-2004-812754
© Georg Thieme Verlag Stuttgart · New York
Hochfeld-Magnetresonanztomographie: Magnetische Anziehungs- und Rotationskräfte auf metallische Implantate bei 3,0 T[*]
High Field MR Imaging: Magnetic Field Interactions of Aneurysm Clips, Coronary Artery Stents and Iliac Artery Stents with a 3.0 Tesla MR SystemPublication History
Publication Date:
25 March 2004 (online)
Zusammenfassung
Ziel: Die In-vitro-Evaluierung verschiedener biomedizinischer Implantate hinsichtlich der auf sie wirkenden magnetischen Anziehungs- und Rotationskräfte an einem 3,0-Tesla-MRT-System. Methode: Es wurden 53 metallische Implantate (14 intrakranielle Aneurysmaclips, 19 Koronararterien- sowie 20 Iliakalarterienstents) an einem 3,0-Tesla-MRT-System (Gyroscan Intera 3.0 T, Philips) untersucht. Die Bestimmung der auf die Implantate im statischen Magnetfeld wirkenden Translationskräfte Fz erfolgte mithilfe des Fadentests über die Messung der Deflektionswinkels β. Die Evaluierung der Rotationskraft Frot erfolgte qualitativ mit einer 5-Punkte-Graduierung (Grad 0: keine Rotationskraft, Grad 4: starke Rotationskraft). Ergebnisse: Bei 52 von 53 getesteten Implantaten blieb die Translationskraft Fz unterhalb der auf das jeweilige Implantat wirkenden Gravitationskraft (β: 0 - 21°, Fz: 0 - 3,8 mN). Bei keinem dieser 52 Implantate wurde eine Rotation relativ zum Magnetfeld B0 (Rotationskraft Grad 0/4) beobachtet. Bei einem Implantat, einem Iliakalarterienstent aus Edelstahl (Zenith, Fa. Cook), wurde ein Deflektionswinkel β von 88° gemessen, entsprechend einer Translationskraft Fz von 299 mN, die dem 29fachen der auf das Implantat wirkenden Gravitationskraft entspricht. Hierzu konkordant zeigten sich in der qualitativen Evaluierung deutliche auf diesen Stent wirkende Rotationskräfte Grad 4/4. Schlussfolgerungen: 52 von 53 getesteten Implantaten können bezüglich der auf sie wirkenden magnetischen Anziehungs- und Rotationskräfte nach ASTM-Kriterien als „sicher” bei der Verwendung in einem MRT-System mit der Feldstärke 3,0 Tesla klassifiziert werden.
Abstract
Purpose: To evaluate magnetic field interactions of commonly used biomedical implants at 3.0 Tesla. Materials and Methods: Fourteen aneurysm clips designed for permanent placement in intracranial aneurysms, 19 coronary artery stents and 20 iliac artery stents were evaluated in an actively shielded compact 3.0 T MR system (Intera, Philips Medical Systems, Best, The Netherlands, length of magnet 1.57 m). The magnetic deflection forces (translational movement) were evaluated as follows: The implants were suspended by a fine string and placed in the magnet bore at the location of the maximum magnetic field gradient. The translational forces Fz were calculated from the measured angle of deflection from the vertical axis. The magnetic field-induced torque (rotational forces) was evaluated as follows: Each implant was placed in the center of the magnetic bore parallel to the static magnetic field B0 (position 0°). Any possible displacement of the implant was noted on a millimeter scale and any torque qualitatively evaluated using a 5 point grading scale (0: no torque; + 4: very strong torque). The implant was turned in steps of 45°, and the procedure was repeated to encompass a full 360° rotation. Results: In 52 of the 53 devices tested, the deflection force (deflection angle: range 0-21°, translational force: range 0-3.8 mN) was less than the gravitational force (i.e., the implant’s weight). These devices (n = 52/53) did not show any alignment to or rotation in the magnetic field at any of the various 45°-increment positions corresponding to a qualitative torque evaluation of grade 0/4. One device (n = 1/53), an iliac artery stent made of stainless steel (Zenith, Cook, Mönchengladbach, BRD), was found to have deflection forces (deflection angle 88° translational force 299 mN) greatly exceeding the gravitational force as well as a pronounced torque (grade 4/4). Conclusion: Out of 53 biomedical implants evaluated for magnetic field interactions at 3.0 T, one iliac artery stent made of stainless steel was found to be potentially unsafe based on ASTM criteria. MR imaging at 3.0 Tesla may be performed safely in patients with any of the other 52 different implants evaluated in this study with respect to magnetic field translational attraction and torque.
Key words
Magnetic resonance (MR) - safety - magnetic resonance imaging, implants - magnetic resonance, high field
10 Ergebnisse dieser Arbeit sind Teil der Dissertationsschrift von Frau cand. med. Bettina Schmiedel.
Literatur
10 Ergebnisse dieser Arbeit sind Teil der Dissertationsschrift von Frau cand. med. Bettina Schmiedel.
- 1 Wen H, Denison T J, Singerman R W. et al . The intrinsic signal-to-noise ratio in human cardiac imaging at 1.5, 3, and 4 T. J Magn Reson. 1997; 125 (1) 65-71
- 2 Schenk J F. Safety of strong, static magnetic fields. J Magn Reson Imaging. 2000; 12 2-19
- 3 Kanal E, Shellock F G. MR imaging of patients with intracranial aneurysm clips. Radiology. 1993; 187 612-614
- 4 Teitelbaum G P, Bradley W G, Klein B D. MR imaging artifacts, ferromagnetism, and magnetic torque of intravascular filters, stents and coils. Radiology. 1988; 166 657-664
- 5 Shellock F G, Kanal E. Yasargil aneurysm clips: evaluation of interactions with a 1.5 Tesla MR system. Radiology. 1998; 207 587-591
- 6 Kanal E, Shellock F G. Aneurysm clips: effects of long-term and multiple exposures to a 1.5 Tesla MR system. Radiology. 1999; 210 563-565
- 7 Shellock F G, Shellock V J. Stents: evaluation of MRI safety. AJR. 1999; 173 543-546
- 8 New P FJ, Rosen B R, Brady T J. et al . Potential hazards and artifacts of ferromagnetic and non-ferromagnetic surgical and dental materials and aneurysm clips in nuclear magnetic resonance imaging. Radiology. 1983; 147 139-148
- 9 American Society for Testing and Materials (ASTM) .Designation: F2052. Standard test method for measurement of magnetically induced displacement force on passive implants in the magnetic resonance environment. In: Annual book of ASTM standards. Section 10. Medical devices and services. Volume 13.01: Medical devices; emergency medical services. West Conshohocken, PA; ASTM 2002: 1576-1580
- 10 Grebmeier J, Weikl A, Gluckert K. et al . In-vitro-study and patient examinations with MRT: the significance of metal implants. Fortschr Röntgenstr. 1991; 154 (5) 484-487
- 11 Kalden P, Prufer D, Schreiber W. et al . In vitro investigation of biological and technical prosthetic heart valves using MRI: evaluation of possible deflection and heating of the implants. Fortschr Röntgenstr. 2000; 172 (2) 184-188
- 12 Kangarlu A, Shellock F G. Aneurysm clips: Evaluation of magnetic field interactions with an 8.0 Tesla system. J Magn Reson Imaging. 2000; 12 107-111
- 13 Schenk J F. The role of magnetic susceptibility in magnetic resonance imaging: magnetic field compatibility of the first and second kind. Med Phsy. 1996; 23 815-850
- 14 Shellock F G. Biomedical implants and devices: Assessment of magnetic field interaction with a 3.0 - Tesla MR System. J Magn Reson Imaging. 2002; 16 721-732
PD Dr. T. Sommer
Radiologische Universitätsklinik
Sigmund-Freud-Straße 25
53105 Bonn
Phone: 0228/287-6463/ oder 6435
Email: t.sommer@uni-bonn.de