Zusammenfassung
Ziel: Untersuchung des Einflusses der retrospektiven EKG-Synchronisierung auf die dreidimensionale Darstellung des Bronchialbaumes und die virtuelle Bronchoskopie. Material und Methode: Bei 25 Patienten wurden eine EKG-synchronisierte und eine nicht-EKG-synchronisierte CT-Untersuchung des Thorax durchgeführt. Aus beiden Bilddatensätzen wurde eine dreidimensionale Oberflächenrekonstruktion SSD (shaded surface display) generiert, die für eine virtuelle Bronchoskopie verwendet wurde. Die Darstellbarkeit kleiner Bronchien im 3D-Datensatz wurde durch drei Radiologen verglichen. Die effektive Strahlendosis und das Signal-zu-Rausch-Verhältnis wurden ermittelt. Ergebnisse: Die Visualisierung der einzelnen Segmente des Bronchialbaumes war für die beiden Akquisitionsmethoden nicht signifikant unterschiedlich. Bei Summation der Scores zeigte sich eine signifikant bessere Bronchialbaumvisualisierung mit der nicht-EKG-synchronisierten Akquisitionstechnik (p < 0,05). Die effektive Strahlendosis, aber auch das Signal-zu-Rausch-Verhältnis waren signifikant höher bei der EKG-synchronisierten Akquisition (p < 0,05). Schlussfolgerung: Der Bronchialbaum kann signifikant besser mit nicht-EKG-synchronisierten Datensätzen visualisiert werden. Mit den aktuellen Rekonstruktionsalgorithmen bringt die EKG-synchronisierte Akquisition keinen zusätzlichen Vorteil.
Abstract
Purpose: To determine the impact of retrospectively ECG-gated multi-detector row CT (MDCT) on three-dimensional (3D) visualization of the bronchial tree and virtual bronchoscopy (VB) as compared to non-ECG-gated data acquisition. Materials and Methods: Contrast-enhanced retrospectively ECG-gated and non-ECG-gated MDCT of the chest was performed in 25 consecutive patients referred for assessment of coronary artery bypass grafts and pathology of the ascending aorta. ECG-gated MDCT data were reconstructed in diastole using an absolute reverse delay of - 400 msec in all patients. In 10 patients additional reconstructions at - 200 msec, - 300 msec, and - 500 msec prior to the R-wave were performed. Shaded surface display (SSD) and virtual bronchoscopy (VB) for visualization of the bronchial segments was performed with ECG-gated and non-ECG-gated MDCT data. The visualization of the bronchial tree underwent blinded scoring. Effective radiation dose and signal-to-noise ratio (SNR) for both techniques were compared. Results: There was no significant difference in visualizing single bronchial segments using ECG-gated compared to non-ECG-gated MDCT data. However, the total sum of scores for all bronchial segments visualized with non-ECG-gated MDCT was significantly higher compared to ECG-gated MDCT (P < 0.05). The summary scores for visualization of bronchial segments for different diastolic reconstructions did not differ significantly. The effective radiation dose and the SNR were significantly higher with the ECG-gated acquisition technique (P < 0.05). Conclusion: The bronchial tree is significantly better visualized when using non-ECG-gated MDCT compared to ECG-gated MDCT. Additionally, non-ECG-gated techniques require less radiation exposure. Thus, the current retrospective ECG-gating technique does not provide any additional benefit for 3D visualization of the bronchial tree and VB.
Key words
Shaded surface display - virtual bronchoscopy - ECG-gated MDCT
References
1
Jolesz F A, Lorensen W E, Shinmoto H. et al .
Interactive virtual endoscopy.
AJR Am J Roentgenol.
1997;
169
1229-1235
2
Kauczor H U, Wolcke B, Fischer B. et al .
Three-dimensional helical CT of the tracheobronchial tree: evaluation of imaging protocols and assessment of suspected stenoses with bronchoscopic correlation.
AJR Am J Roentgenol.
1996;
167
419-424
3
Mahesh M.
The AAPM/RSNA Physics Tutorial for Residents: Search for isotropic resolution in CT from conventional through multiple-row detector.
Radiographics.
2002;
22
949-962
4
Summers R M, Selbie W S, Malley J D. et al .
Polypoid lesions of airways: early experience with computer-assisted detection by using virtual bronchoscopy and surface curvature.
Radiology.
1998;
208
331-337
5
Higgins W E, Ramaswamy K, Swift R D. et al .
Virtual bronchoscopy for three-dimensional pulmonary image assessment: state of the art and future needs.
Radiographics.
1998;
18
761-778
6
Rubin G D, Beaulieu C F, Argiro V. et al .
Perspective volume rendering of CT and MR images: applications for endoscopic imaging.
Radiology.
1996;
199
321-330
7
Seemann M D, Gebicke K, Luboldt W. et al .
[Hybrid 3D rendering of the thorax and surface-based virtual bronchoscopy in surgical and interventional therapy control].
Fortschr Röntgenstr.
2001;
173
650-657
8
Liewald F, Lang G, Fleiter T. et al .
Comparison of virtual and fiberoptic bronchoscopy.
Thorac Cardiovasc Surg.
1998;
46
361-364
9
Seemann M D, Heuschmid M, Vollmar J. et al .
Virtual bronchoscopy: comparison of different surface rendering models.
Technol Cancer Res Treat.
2003;
2
273-279
10
Jang D P, Han M H, Kim S I.
Virtual endoscopy using surface rendering and perspective volume rendering.
Stud Health Technol Inform.
1999;
62
161-166
11
Achenbach S, Giesler T, Ropers D. et al .
Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated, multislice spiral computed tomography.
Circulation.
2001;
103
2535-2538
12
Nieman K, Rensing B J, van Geuns R J. et al .
Usefulness of multislice computed tomography for detecting obstructive coronary artery disease.
Am J Cardiol.
2002;
89
913-918
13
Willmann J K, Weishaupt D, Lachat M. et al .
Electrocardiographically gated multi-detector row CT for assessment of valvular morphology and calcification in aortic stenosis.
Radiology.
2002;
225
120-128
14
Roos J E, Willmann J K, Weishaupt D. et al .
Thoracic aorta: motion artifact reduction with retrospective and prospective electrocardiography-assisted multi-detector row CT.
Radiology.
2002;
222
271-277
15
Yamada K, Soejima T, Minami T. et al .
Three-dimensional treatment planning using electrocardiographically gated multi-detector row CT.
Int J Radiat Oncol Biol Phys.
2003;
56
235-239
16
Schoepf U J, Becker C R, Bruening R D. et al .
Electrocardiographically gated thin-section CT of the lung.
Radiology.
1999;
212
649-654
17
Montaudon M, Berger P, Blachere H. et al .
Thin-section CT of the lung: influence of 0.5-s gantry rotation and ECG triggering on image quality.
Eur Radiol.
2001;
11
1681-1687
18
Rodenwaldt J, Schorn C, Grabbe E.
[Virtual endoscopy of the upper airway with spiral CT].
Radiologe.
2000;
40
233-239
19
Ley S, Mayer D, Brook B S. et al .
Radiological imaging as the basis for a simulation software of ventilation in the tracheo-bronchial tree.
Eur Radiol.
2002;
12
2218-2228
20
Kalender W A, Schmidt B, Zankl M. et al .
A PC program for estimating organ dose and effective dose values in computed tomography.
Eur Radiol.
1999;
9
555-562
21
Remy J, Remy-Jardin M, Artaud D. et al .
Multiplanar and three-dimensional reconstruction techniques in CT: impact on chest diseases.
Eur Radiol.
1998;
8
335-351
22
Grenier P A, Beigelman-Aubry C, Fetita C. et al .
New frontiers in CT imaging of airway disease.
Eur Radiol.
2002;
12
1022-1044
23
Becker C R, Knez A, Ohnesorge B. et al .
Imaging of noncalcified coronary plaques using helical CT with retrospective ECG gating.
AJR Am J Roentgenol.
2000;
175
423-424
24
Hong C, Becker C R, Huber A. et al .
ECG-gated reconstructed multi- detector row CT coronary angiography: effect of varying trigger delay on image quality.
Radiology.
2001;
220
712-717
25
Jakobs T F, Becker C R, Ohnesorge B. et al .
Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation.
Eur Radiol.
2002;
12
1081-1086
26
Achenbach S, Ulzheimer S, Baum U. et al .
Noninvasive coronary angiography by retrospectively ECG-gated multislice spiral CT.
Circulation.
2000;
102
2823-2828
27
Lackner K, Thurn P.
Computed tomography of the heart: ECG-gated and continuous scans.
Radiology.
1981;
140
413-420
28
Kachelriess M, Ulzheimer S, Kalender W A.
ECG-correlated image reconstruction from subsecond multi-slice spiral CT scans of the heart.
Med Phys.
2000;
27
1881-1902
29
Vogl T J, Abolmaali N D, Diebold T. et al .
Techniques for the detection of coronary atherosclerosis: multi-detector row CT coronary angiography.
Radiology.
2002;
223
212-220
30
Ohnesorge B, Flohr T, Becker C. et al .
Cardiac imaging by means of electrocardiographically gated multisection spiral CT: initial experience.
Radiology.
2000;
217
564-571
PD Dr. med. Thomas Boehm
Dpt. Medical Radiology, Institute of Diagnostic Radiology, University Hospital Zurich
Rämistrasse 100
8091 Zurich
eMail: Thomas_Boehm@gmx.net