Klin Monbl Augenheilkd 2004; 221(4): 227-246
DOI: 10.1055/s-2004-812941
Übersicht

© Georg Thieme Verlag Stuttgart · New York

Moderne diagnostische Verfahren bei Glaukomverdacht und Glaukom

Review of Modern Diagnostic Methods for Glaucoma Suspects and Glaucoma PatientsC. Vass1
  • 1Universitätsklinik für Augenheilkunde und Optometrie, Medizinische Universität Wien (Interimistische Leitung: a.o. Univ.-Prof. Dr. Andreas Wedrich)
Further Information

Publication History

Eingegangen: 24.11.2003

Angenommen: 2.2.2004

Publication Date:
04 May 2004 (online)

Zusammenfassung

Hintergrund: Die Grenzziehung zwischen frühen glaukomatösen Schäden und Normalbefunden, aber auch die Verlaufsbeobachtung von Glaukompatienten bereiten noch immer häufig Probleme. In den letzten Jahren wurden zahlreiche neue Untersuchungsmethoden für Glaukom erprobt und teilweise bereits am Markt eingeführt. Methoden: Die vorliegende Zusammenfassung gibt einen Überblick über die Ziele apparativer Untersuchungen bei Glaukom und Glaukomverdacht. Die für einen breiteren Einsatz in der ophthalmologischen Praxis infrage kommenden Untersuchungsmethoden werden bezüglich ihrer Eignung für die Ziele der Frühdiagnose, objektiver Diagnostik, Progressionsanalyse und Screeningeinsatz beurteilt. Schlussfolgerungen: Bislang haben die neuen apparativen Methoden das diagnostische Vorgehen nur gering beeinflusst. Dies liegt im Wesentlichen daran, dass gerade bei den problematischen Glaukomgrenzfällen auch diese Methoden nur über eine limitierte Aussagekraft verfügen oder noch nicht ausreichend untersucht wurden. Dennoch können hier der Heidelberger Retina Tomograph (HRT), der Nervenfaseranalysator GDx, die Blau/gelb-Perimetrie sowie der Frequenzverdopplungstest (FDT) eine gewisse Rolle spielen. Zur Therapiekontrolle haben sich der HRT und das GDx vor allem in frühen Krankheitsstadien bewährt. Der FDT eignet sich durch sehr kurze Untersuchungsdauer, gepaart mit guter Spezifität, gut als Screeningtest.

Abstract

Background: Diagnosis of early glaucomatous damage as well as the detection of glaucomatous change are still difficult tasks. During the last years numerous new diagnostic techniques have been investigated and some of them have been introduced to the market. Methods: This paper reviews the different aims of diagnostic technologies in the field of glaucoma. Methods appearing suitable for a large-scale use by ophthalmologists will be judged according to their suitability to meet the goals of early diagnosis, objective diagnosis, progression analysis and screening. Conclusions: The new diagnostic techniques have not yet greatly influenced our diagnostic procedure. This is mainly due to the fact that, for the most difficult borderline cases of glaucoma, these methods are of limited value, or have not yet been sufficiently investigated. Nevertheless, the Heidelberg retina tomograph (HRT), the nerve fiber analyzer GDX, short wavelength perimetry (SWAP), and the frequency doubling test (FDT) may play a role in these cases. For follow-up, HRT and GDx have proven valuable, especially in early stages of the disease. The very short testing time of FDT together with good specificity qualifies this test for glaucoma screening.

Literatur

  • 1 Agarwal H C, Gulati V, Sihota R. The normal optic nerve head on Heidelberg Retina Tomograph II.  Indian J Ophthalmol. 2003;  51 25-33
  • 2 Airaksinen P J, Drance S M. Neuroretinal rim area and retinal nerve fiber layer in glaucoma.  Arch Ophthalmol. 1985;  103 203-204
  • 3 Airaksinen P J, Drance S M, Douglas G R. et al . Diffuse and localized nerve fiber loss in glaucoma.  Am J Ophthalmol. 1984;  98 566-571
  • 4 Allen C S, Sponsel W E, Trigo Y. et al . Comparison of the frequency doubling technology screening algorithm and the Humphrey 24 - 2 SITA-FAST in a large eye screening.  Clin Experiment Ophthalmol. 2002;  30 8-14
  • 5 Asrani S, Challa P, Herndon L. et al . Correlation among retinal thickness, optic disc, and visual field in glaucoma patients and suspects: A pilot study.  J Glaucoma. 2003;  12 119-128
  • 6 Azuara B lanco A, Katz L J, Spaeth G L. et al . Detection of changes of the optic disc in glaucomatous eyes: clinical examination and image analysis with the Topcon Imagenet system.  Acta Ophthalmol Scand. 2000;  78 647-650
  • 7 Bagga H, Greenfield D S, Feuer W. et al . Scanning laser polarimetry with variable corneal compensation and optical coherence tomography in normal and glaucomatous eyes.  Am J Ophthalmol. 2003;  135 521-529
  • 8 Bagga H, Greenfield D S, Knighton R W. Scanning laser polarimetry with variable corneal compensation: identification and correction for corneal birefringence in eyes with macular disease.  Invest Ophthalmol Vis Sci. 2003;  44 1969-1976
  • 9 Bartz-Schmidt K U, Thumann G, Jonescu-Cuypers C P. et al . Quantitative morphologic and functional evaluation of the optic nerve head in chronic open-angle glaucoma.  Surv Ophthalmol. 1999;  44 (Suppl 1) 41-53
  • 10 Bathija R, Zangwill L, Berry C C. et al . Detection of early glaucomatous structural damage with confocal scanning laser tomography.  J Glaucoma. 1998;  7 121-127
  • 11 Bayer A U, Erb C. Short wavelength automated perimetry, frequency doubling technology perimetry, and pattern electroretinography for prediction of progressive glaucomatous standard visual field defects.  Ophthalmology. 2002;  109 1009-1017
  • 12 Bengtsson B, Olsson J, Heijl A. et al . A new generation of algorithms for computerized threshold perimetry, SITA.  Acta Ophthalmol Scand. 1997;  75 368-375
  • 13 Blumenthal E Z, Frenkel S. Inter-device reproducibility of the scanning laser polarimeter with variable cornea compensation.  Ft. Lauderdale. In ARVO 2003  2003; 
  • 14 Blumenthal E Z, Sample P A, Zangwill L. et al . Comparison of long-term variability for standard and short-wavelength automated perimetry in stable glaucoma patients.  Am J Ophthalmol. 2000;  129 309-313
  • 15 Blumenthal E Z, Williams J M, Weinreb R N. et al . Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography.  Ophthalmology. 2000;  107 2278-2282
  • 16 Boehm M D, Nedrud C, Greenfield D S. et al . Scanning laser polarimetry and detection of progression after optic disc hemorrhage in patients with glaucoma.  Arch Ophthalmol. 2003;  121 189-194
  • 17 Bonomi L, Marchini G, Marraffa M. et al . The relationship between intraocular pressure and glaucoma in a defined population. Data from the Egna-Neumarkt Glaucoma Study.  Ophthalmologica. 2001;  215 34-38
  • 18 Bowd C, Chan K, Zangwill L M. et al . Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc.  Invest Ophthalmol Vis Sci. 2002;  43 3444-3454
  • 19 Bowd C, Weinreb R N, Lee B. et al . Optic disk topography after medical treatment to reduce intraocular pressure.  Am J Ophthalmol. 2000;  130 280-286
  • 20 Burk R O, Rendon R. Clinical detection of optic nerve damage: measuring changes in cup steepness with use of a new image alignment algorithm.  Surv Ophthalmol. 2001;  45 (Suppl 3) 297-303 , discussion S332 - 294
  • 21 Carpineto P, Ciancaglini M, Zuppardi E. et al . Reliability of nerve fiber layer thickness measurements using optical coherence tomography in normal and glaucomatous eyes.  Ophthalmology. 2003;  110 190-195
  • 22 Cello K E, Nelson Q uigg JM, Johnson C A. Frequency doubling technology perimetry for detection of glaucomatous visual field loss.  Am J Ophthalmol. 2000;  129 314-322
  • 23 Chauhan B C, Blanchard J W, Hamilton D C. et al . Technique for detecting serial topographic changes in the optic disc and peripapillary retina using scanning laser tomography.  Invest Ophthalmol Vis Sci. 2000;  41 775-782
  • 24 Chauhan B C, House P H. Intratest variability in conventional and high-pass resolution perimetry.  Ophthalmology. 1991;  98 79-83
  • 25 Chauhan B C, House P H, McCormick T A. et al . Comparison of conventional and high-pass resolution perimetry in a prospective study of patients with glaucoma and healthy controls.  Arch Ophthalmol. 1999;  117 24-33
  • 26 Chauhan B C, McCormick T A, Nicolela M T. et al . Optic disc and visual field changes in a prospective longitudinal study of patients with glaucoma: comparison of scanning laser tomography with conventional perimetry and optic disc photography.  Arch Ophthalmol. 2001;  119 1492-1499
  • 27 Chauhan D S, Marshall J. The interpretation of optical coherence tomography images of the retina.  Invest Ophthalmol Vis Sci. 1999;  40 2332-2342
  • 28 Chen E, Gedda U, Landau I. Thinning of the papillomacular bundle in the glaucomatous eye and its influence on the reference plane of the Heidelberg retinal tomography.  J Glaucoma. 2001;  10 386-389
  • 29 Chen Y Y, Chen P P, Xu L. et al . Correlation of peripapillary nerve fiber layer thickness by scanning laser polarimetry with visual field defects in patients with glaucoma.  J Glaucoma. 1998;  7 312-316
  • 30 Choplin N T, Lundy D C. The sensitivity and specificity of scanning laser polarimetry in the detection of glaucoma in a clinical setting.  Ophthalmology. 2001;  108 899-904
  • 31 Choplin N T, Zhou Q, Knighton R W. Effect of individualized compensation for anterior segment birefringence on retinal nerve fiber layer assessments as determined by scanning laser polarimetry.  Ophthalmology. 2003;  110 719-725
  • 32 Colen T P, Lemij H G. Prevalence of split nerve fiber layer bundles in healthy eyes imaged with scanning laser polarimetry.  Ophthalmology. 2001;  108 151-156
  • 33 Colen T P, Lemij H G. Sensitivity and specificity of the GDx: Clinical judgment of standard printouts versus the number.  J Glaucoma. 2003;  12 129-133
  • 34 Collaborative N ormal-Tension Glaucoma Study Group. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures.  Am J Ophthalmol. 1998;  126 487-497
  • 35 Corona E, Mitra S, Wilson M. et al . Digital stereo image analyzer for generating automated 3-D measures of optic disc deformation in glaucoma.  IEEE Trans Med Imaging. 2002;  21 1244-1253
  • 36 Curcio C A, Allen K A. Topography of ganglion cells in human retina.  J Comp Neurol. 1990;  300 5-25
  • 37 Demirel S, Johnson C A. Incidence and prevalence of short wavelength automated perimetry deficits in ocular hypertensive patients.  Am J Ophthalmol. 2001;  131 709-715
  • 38 Drexler W, Morgner U, Ghanta R K. et al . Ultrahigh-resolution ophthalmic optical coherence tomography.  Nat Med. 2001;  7 502-506
  • 39 Drexler W, Sattmann H, Hermann B. et al . Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography.  Arch Ophthalmol. 2003;  121 695-706
  • 40 Flammer J, Drance S M, Fankhauser F. et al . Differential light threshold in automated static perimetry. Factors influencing short-term fluctuation.  Arch Ophthalmol. 1984;  102 876-879
  • 41 Ford B A, Artes P H, McCormick T A. et al . Comparison of data analysis tools for detection of glaucoma with the Heidelberg Retina Tomograph.  Ophthalmology. 2003;  110 1145-1150
  • 42 Fujimoto N, Minowa K, Miyauchi O. et al . Learning effect for frequency doubling perimetry in patients with glaucoma.  Am J Ophthalmol. 2002;  133 269-270
  • 43 Gaasterland D E, Blackwell B, Dally L G. et al . The Advanced Glaucoma Intervention Study (AGIS): Variability among academic glaucoma subspecialists in assessing optic disc notching.  Trans Am Ophthalmol Soc. 2001;  99 177-184 , discussion 184 - 175
  • 44 Garway H eath DF, Greaney M J, Caprioli J. Correction for the erroneous compensation of anterior segment birefringence with the scanning laser polarimeter for glaucoma diagnosis.  Invest Ophthalmol Vis Sci. 2002;  43 1465-1474
  • 45 Garway-Heath D F, Wollstein G, Hitchings R A. Aging changes of the optic nerve head in relation to open angle glaucoma.  Br J Ophthalmol. 1997;  81 840-845
  • 46 Girkin C A, Emdadi A, Sample P A. et al . Short-wavelength automated perimetry and standard perimetry in the detection of progressive optic disc cupping.  Arch Ophthalmol. 2000;  118 1231-1236
  • 47 Greaney M J, Hoffman D C, Garway H eath DF. et al . Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma.  Invest Ophthalmol Vis Sci. 2002;  43 140-145
  • 48 Greenfield D S, Bagga H, Knighton R W. Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography.  Arch Ophthalmol. 2003;  121 41-46
  • 49 Greenfield D S, Knighton R W, Feuer W J. et al . Correction for corneal polarization axis improves the discriminating power of scanning laser polarimetry.  Am J Ophthalmol. 2002;  134 27-33
  • 50 Greenfield D S, Knighton R W, Huang X R. Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry.  Am J Ophthalmol. 2000;  129 715-722
  • 51 Guedes V, Schuman J S, Hertzmark E. et al . Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes.  Ophthalmology. 2003;  110 177-189
  • 52 Harju M, Vesti E. Scanning laser ophthalmoscopy of the optic nerve head in exfoliation glaucoma and ocular hypertension with exfoliation syndrome.  Br J Ophthalmol. 2001;  85 297-303
  • 53 Harwerth R S, Smith E L 3rd, Chandler M. Progressive visual field defects from experimental glaucoma: measurements with white and colored stimuli.  Optom Vis Sci. 1999;  76 558-570
  • 54 Heijl A, Bengtsson B. The effect of perimetric experience in patients with glaucoma.  Arch Ophthalmol. 1996;  114 19-22
  • 55 Heijl A, Lindgren G, Olsson J. Normal variability of static perimetric threshold values across the central visual field.  Arch Ophthalmol. 1987;  105 1544-1549
  • 56 Hoh S T, Greenfield D S, Mistlberger A. et al . Optical coherence tomography and scanning laser polarimetry in normal, ocular hypertensive, and glaucomatous eyes.  Am J Ophthalmol. 2000;  129 129-135
  • 57 Hoh S T, Ishikawa H, Greenfield D S. et al . Peripapillary nerve fiber layer thickness measurement reproducibility using scanning laser polarimetry.  J Glaucoma. 1998;  7 12-15
  • 58 Hollo G, Suveges I, Nagymihaly A. et al . Scanning laser polarimetry of the retinal nerve fibre layer in primary open angle and capsular glaucoma.  Br J Ophthalmol. 1997;  81 857-861
  • 59 Horani A, Frenkel S, Yahalom C. et al . The learning effect in visual field testing of healthy subjects using frequency doubling technology.  J Glaucoma. 2002;  11 511-516
  • 60 Hoyt W F, Frisen L, Newman N M. Fundoscopy of nerve fiber layer defects in glaucoma.  Invest Ophthalmol. 1973;  12 814-829
  • 61 Huang X R, Knighton R W. Linear birefringence of the retinal nerve fiber layer measured in vitro with a multispectral imaging micropolarimeter.  J Biomed Opt. 2002;  7 199-204
  • 62 Iester M, Altieri M, Vittone P. et al . Detection of glaucomatous visual field defect by nonconventional perimetry.  Am J Ophthalmol. 2003;  135 35-39
  • 63 Iester M, Capris P, Pandolfo A. et al . Learning effect, short-term fluctuation, and long-term fluctuation in frequency doubling technique.  Am J Ophthalmol. 2000;  130 160-164
  • 64 Iester M, De Ferrari R, Zanini M. Topographic analysis to discriminate glaucomatous from normal optic nerve heads with a confocal scanning laser: New optic disk analysis without any observer input.  Surv Ophthalmol. 1999;  44 S33-S40
  • 65 Iester M, Jonas J B, Mardin C Y. et al . Discriminant analysis models for early detection of glaucomatous optic disc changes.  Br J Ophthalmol. 2000;  84 464-468
  • 66 Iester M, Mermoud A, Schnyder C. Frequency doubling technique in patients with ocular hypertension and glaucoma: correlation with octopus perimeter indices.  Ophthalmology. 2000;  107 288-294
  • 67 Iester M, Rolando M, Macri A. Three-dimensional optic nerve head algorithm for the detection of glaucomatous damage.  Graefe’s Arch Clin Exp Ophthalmol. 2001;  239 469-473
  • 68 Iwasaki A, Sugita M. Performance of glaucoma mass screening with only a visual field test using frequency-doubling technology perimetry.  Am J Ophthalmol. 2002;  134 529-537
  • 69 Johnson C A, Adams A J, Casson E J. et al . Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss.  Arch Ophthalmol. 1993;  111 645-650
  • 70 Jonas J B, Grundler A E. Correlation between mean visual field loss and morphometric optic disk variables in the open-angle glaucomas.  Am J Ophthalmol. 1997;  124 488-497
  • 71 Jones A L, Sheen N J, North R V. et al . The Humphrey optical coherence tomography scanner: quantitative analysis and reproducibility study of the normal human retinal nerve fibre layer.  Br J Ophthalmol. 2001;  85 673-677
  • 72 Keltner J L, Johnson C A, Quigg J M. et al . Confirmation of visual field abnormalities in the Ocular Hypertension Treatment Study. Ocular Hypertension Treatment Study Group.  Arch Ophthalmol. 2000;  118 1187-1194
  • 73 Kesen M R, Spaeth G L, Henderer J D. et al . The Heidelberg Retina Tomograph vs clinical impression in the diagnosis of glaucoma.  Am J Ophthalmol. 2002;  133 613-616
  • 74 Knighton R W, Huang X R, Greenfield D S. Analytical model of scanning laser polarimetry for retinal nerve fiber layer assessment.  Invest Ophthalmol Vis Sci. 2002;  43 383-392
  • 75 Kogure S, Iijima H, Tsukahara S. A new parameter for assessing the thickness of the retinal nerve fiber layer for glaucoma diagnosis.  Eur J Ophthalmol. 1999;  9 93-98
  • 76 Lauande P imentel R, Carvalho R A, Oliveira H C. et al . Discrimination between normal and glaucomatous eyes with visual field and scanning laser polarimetry measurements.  Br J Ophthalmol. 2001;  85 586-591
  • 77 Mardin C Y, Horn F, Budde W M. et al . Morphometrische Querschnittsverlaufsbeobachtung der Papille mit dem HRT in Augen mit morphologischer Progression der glaukomatosen Atrophie der Papille des Nervus opticus.  Klin Monatsbl Augenheilkd. 2000;  217 82-87
  • 78 Mardin C Y, Horn F K, Jonas J B. et al . Preperimetric glaucoma diagnosis by confocal scanning laser tomography of the optic disc.  Br J Ophthalmol. 1999;  83 299-304
  • 79 Martin L, Wanger P, Vancea L. et al . Concordance of high-pass resolution perimetry and frequency-doubling technology perimetry results in glaucoma: no support for selective ganglion cell damage.  J Glaucoma. 2003;  12 40-44
  • 80 Martinez G A, Sample P A, Weinreb R N. Comparison of high-pass resolution perimetry and standard automated perimetry in glaucoma.  Am J Ophthalmol. 1995;  119 195-201
  • 81 Matsuo H, Tomita G, Suzuki Y. et al . Learning effect and measurement variability in frequency-doubling technology perimetry in chronic open-angle glaucoma.  J Glaucoma. 2002;  11 467-473
  • 82 Medeiros F A, Susanna R Jr. Comparison of algorithms for detection of localised nerve fibre layer defects using scanning laser polarimetry.  Br J Ophthalmol. 2003;  87 413-419
  • 83 Michelson G, Groh M J. Screening models for glaucoma.  Curr Opin Ophthalmol. 2001;  12 105-111
  • 84 Miglior S, Albe E, Guareschi M. et al . Intraobserver and interobserver reproducibility in the evaluation of optic disc stereometric parameters by Heidelberg Retina Tomograph.  Ophthalmology. 2002;  109 1072-1077
  • 85 Miglior S, Casula M, Guareschi M. et al . Clinical ability of Heidelberg retinal tomograph examination to detect glaucomatous visual field changes.  Ophthalmology. 2001;  108 1621-1627
  • 86 Mikelberg F S, Parfitt C M, Swindale N V. et al . Ability of Heidelberg Retina Tomograph to detect early glaucomatous visual field loss.  J Glaucoma. 1995;  4 242-247
  • 87 Mitchell P, Wang J J, Hourihan F. The relationship between glaucoma and pseudoexfoliation: the Blue Mountains Eye Study.  Arch Ophthalmol. 1999;  117 1319-1324
  • 88 Mohammadi K, Zangwill L M, Bowd C. et al . Change over time in GDx Nerve Fiber Analyzer measurements in eyes that develop repeatable glaucomatous visual fields.  ARVO. 2003;  , Ft. Lauderdale, 2003
  • 89 Mok K H, Lee V W, So K F. Retinal nerve fiber layer measurement by optical coherence tomography in glaucoma suspects with short-wavelength perimetry abnormalities.  J Glaucoma. 2003;  12 45-49
  • 90 Morgan J E, Waldock A, Jeffery G. et al . Retinal nerve fibre layer polarimetry: histological and clinical comparison.  Br J Ophthalmol. 1998;  82 684-690
  • 91 Nicolela M T, Drance S M, Broadway D C. et al . Agreement among clinicians in the recognition of patterns of optic disk damage in glaucoma.  Am J Ophthalmol. 2001;  132 836-844
  • 92 Nicolela M T, Martinez B ello C, Morrison C A. et al . Scanning laser polarimetry in a selected group of patients with glaucoma and normal controls.  Am J Ophthalmol. 2001;  132 845-854
  • 93 Niessen A G, van den Berg T J, Langerhorst C T. et al . Grading of retinal nerve fiber layer with a photographic reference set.  Am J Ophthalmol. 1995;  120 577-586
  • 94 Paczka J A, Friedman D S, Quigley H A. et al . Diagnostic capabilities of frequency-doubling technology, scanning laser polarimetry, and nerve fiber layer photographs to distinguish glaucomatous damage.  Am J Ophthalmol. 2001;  131 188-197
  • 95 Patel S C, Friedman D S, Varadkar P. et al . Algorithm for interpreting the results of frequency doubling perimetry.  Am J Ophthalmol. 2000;  129 323-327
  • 96 Poinoosawmy D, Tan J C, Bunce C. et al . Longitudinal nerve fibre layer thickness change in normal-pressure glaucoma.  Graefe’s Arch Clin Exp Ophthalmol. 2000;  238 965-969
  • 97 Poinoosawmy D, Tan J CH, Bunce C. et al . The ability of the GDx nerve fibre analyser neural network to diagnose glaucoma.  Graefe’s Arch Clin Exp Ophthalmol. 2001;  239 122-127
  • 98 Polo V, Larrosa J M, Pinilla I. et al . Predictive value of short-wavelength automated perimetry: a 3-year follow-up study.  Ophthalmology. 2002;  109 761-765
  • 99 Quigley H A, Addicks E M, Green W R. Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy.  Arch Ophthalmol. 1982;  100 135-146
  • 100 Quigley H A, Dunkelberger G R, Green W R. Chronic human glaucoma causing selectively greater loss of large optic nerve fibers.  Ophthalmology. 1988;  95 357-363
  • 101 Quigley H A, Dunkelberger G R, Green W R. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma.  Am J Ophthalmol. 1989;  107 453-464
  • 102 Quigley H A, Katz J, Derick R J. et al . An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage.  Ophthalmology. 1992;  99 19-28
  • 103 Quigley H A, Miller N R, George T. Clinical evaluation of nerve fiber layer atrophy as an indicator of glaucomatous optic nerve damage.  Arch Ophthalmol. 1980;  98 1564-1571
  • 104 Quigley H A, Reacher M, Katz J. et al . Quantitative grading of nerve fiber layer photographs.  Ophthalmology. 1993;  100 1800-1807
  • 105 Quigley H A, Sanchez R M, Dunkelberger G R. et al . Chronic glaucoma selectively damages large optic nerve fibers.  Invest Ophthalmol Vis Sci. 1987;  28 913-920
  • 106 Renard J PG, May F, Clerc P. et al . Reproducibility of measurements with the scanning laser polarimetry with variable corneal compensation (GDx-VCC).  ARVO. 2003;  , Ft. Lauderdale: 2003
  • 107 Reus N J, Lemij H G. Visualization of localized glaucomatous defects with scanning laser polarimetry.  ARVO. 2003;  , Ft. Lauderdale: 2003
  • 108 Sample P A. Short-wavelength automated perimetry: its role in the clinic and for understanding ganglion cell function.  Prog Retin Eye Res. 2000;  19 369-383
  • 109 Sample P A, Bosworth C F, Blumenthal E Z. et al . Visual function-specific perimetry for indirect comparison of different ganglion cell populations in glaucoma.  Invest Ophthalmol Vis Sci. 2000;  41 1783-1790
  • 110 Sample P A, Esterson F D, Weinreb R N. et al . The aging lens: in vivo assessment of light absorption in 84 human eyes.  Invest Ophthalmol Vis Sci. 1988;  29 1306-1311
  • 111 Schuman J S, Hee M R, Puliafito C A. et al . Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography.  Arch Ophthalmol. 1995;  113 586-596
  • 112 Shou T, Liu J, Wang W. et al . Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma.  Invest Ophthalmol Vis Sci. 2003;  44 3005-3010
  • 113 Sihota R, Gulati V, Agarwal H C. et al . Variables affecting test-retest variability of Heidelberg Retina Tomograph II stereometric parameters.  J Glaucoma. 2002;  11 321-328
  • 114 Sinai M J, Zhou Q. Diagnostic utility of the GDx VCC: Comparison between normals and glaucoma patients usion ROC analysis.  In ARVO. 2003;  Ft Lauderdale 2003
  • 115 Smith S D, Katz J, Quigley H A. Effect of cataract extraction on the results of automated perimetry in glaucoma.  Arch Ophthalmol. 1997;  115 1515-1519
  • 116 Soliman M A, Van Den Berg T J, Ismaeil A A. et al . Retinal nerve fiber layer analysis: relationship between optical coherence tomography and red-free photography.  Am J Ophthalmol. 2002;  133 187-195
  • 117 Sommer A, Katz J, Quigley H A. et al . Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss.  Arch Ophthalmol. 1991;  109 77-83
  • 118 Sommer A, Miller N R, Pollack I. et al . The nerve fiber layer in the diagnosis of glaucoma.  Arch Ophthalmol. 1977;  95 2149-2156
  • 119 Sponsel W E, Shoemaker J, Trigo Y. et al . Frequency of sustained glaucomatous-type visual field loss and associated optic nerve cupping in Beaver Dam, Wisconsin.  Clin Experiment Ophthalmol. 2001;  29 352-358
  • 120 Spry P G, Johnson C A, McKendrick A M. et al . Variability components of standard automated perimetry and frequency-doubling technology perimetry.  Invest Ophthalmol Vis Sci. 2001;  42 1404-1410
  • 121 Stroux A, Korth M, Junemann A. et al . A statistical model for the evaluation of sensory tests in glaucoma, depending on optic disc damage.  Invest Ophthalmol Vis Sci. 2003;  44 2879-2884
  • 122 Stroux A, Martus P, Budde W. et al . Sequential classification in glaucoma diagnosis.  Graefe’s Arch Clin Exp Ophthalmol. 2003;  241 277-283
  • 123 Tan J C, Garway H eath DF, Fitzke F W. et al . Reasons for rim area variability in scanning laser tomography.  Invest Ophthalmol Vis Sci. 2003;  44 1126-1131
  • 124 Teesalu P, Airaksinen P J, Tuulonen A. Blue-on-yellow visual field and retinal nerve fiber layer in ocular hypertension and glaucoma.  OPHTHALMOLOGY. 1998;  105 2077-2081
  • 125 Teesalu P, Airaksinen P J, Tuulonen A. et al . Fluorometry of the crystalline lens for correcting blue-on-yellow perimetry results.  Invest Ophthalmol Vis Sci. 1997;  38 697-703
  • 126 Teesalu P, Tuulonen A, Airaksinen P J. Optical coherence tomography and localized defects of the retinal nerve fiber layer.  Acta Ophthalmol Scand. 2000;  78 49-52
  • 127 Thomas R, Bhat S, Muliyil J P. et al . Frequency doubling perimetry in glaucoma.  J Glaucoma. 2002;  11 46-50
  • 128 Tielsch J M, Katz J, Singh K. et al . A population-based evaluation of glaucoma screening: the Baltimore Eye Survey.  Am J Epidemiol. 1991;  134 1102-1110
  • 129 Trible J R, Schultz R O, Robinson J C. et al . Accuracy of scanning laser polarimetry in the diagnosis of glaucoma.  Arch Ophthalmol. 1999;  117 1298-1304
  • 130 Trible J R, Schultz R O, Robinson J C. et al . Accuracy of glaucoma detection with frequency-doubling perimetry.  Am J Ophthalmol. 2000;  129 740-745
  • 131 Tuulonen A, Airaksinen P J. Initial glaucomatous optic disk and retinal nerve fiber layer abnormalities and their progression.  Am J Ophthalmol. 1991;  111 485-490
  • 132 Varma R, Skaf M, Barron E. Retinal nerve fiber layer thickness in normal human eyes.  Ophthalmology. 1996;  103 2114-2119
  • 133 Vihanninjoki K, Teesalu P, Burk R O. et al . Search for an optimal combination of structural and functional parameters for the diagnosis of glaucoma. Multivariate analysis of confocal scanning laser tomograph, blue-on-yellow visual field and retinal nerve fiber layer data.  Graefe’s Arch Clin Exp Ophthalmol. 2000;  238 477-481
  • 134 Vitale S, Smith T D, Quigley T. et al . Screening performance of functional and structural measurements of neural damage in open-angle glaucoma: a case-control study from the Baltimore Eye Survey.  J Glaucoma. 2000;  9 346-356
  • 135 Weber A J, Chen H, Hubbard W C. et al . Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus.  Invest Ophthalmol Vis Sci. 2000;  41 1370-1379
  • 136 Weih L M, Nanjan M, McCarty C A. et al . Prevalence and predictors of open-angle glaucoma: results from the visual impairment project.  Ophthalmology. 2001;  108 1966-1972
  • 137 Weinreb R N, Bowd C, Greenfield D S. et al . Measurement of the magnitude and axis of corneal polarization with scanning laser polarimetry.  Arch Ophthalmol. 2002;  120 901-906
  • 138 Weinreb R N, Bowd C, Zangwill L M. Glaucoma detection using scanning laser polarimetry with variable corneal polarization compensation.  Arch Ophthalmol. 2003;  121 218-224
  • 139 Weinreb R N, Dreher A W, Coleman A. et al . Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness.  Arch Ophthalmol. 1990;  108 557-560
  • 140 Weinreb R N, Shakiba S, Sample P A. et al . Association between quantitative nerve fiber layer measurement and visual field loss in glaucoma.  Am J Ophthalmol. 1995;  120 732-738
  • 141 Weinreb R N, Zangwill L, Berry C C. et al . Detection of glaucoma with scanning laser polarimetry.  Arch Ophthalmol. 1998;  116 1583-1589
  • 142 Wild J M, Dengler-Harles M, Searle A E. et al . The influence of the learning effect on automated perimetry in patients with suspected glaucoma.  Acta Ophthalmol (Copenh). 1989;  67 537-545
  • 143 Wild J M, Moss I D. Baseline alterations in blue-on-yellow normal perimetric sensitivity.  Graefe’s Arch Clin Exp Ophthalmol. 1996;  234 141-149
  • 144 Wild J M, Moss I D, Whitaker D. et al . The statistical interpretation of blue-on-yellow visual field loss.  Invest Ophthalmol Vis Sci. 1995;  36 1398-1410
  • 145 Wollstein G, Garway H eath DF, Fontana L. et al . Identifying early glaucomatous changes. Comparison between expert clinical assessment of optic disc photographs and confocal scanning ophthalmoscopy.  Ophthalmology. 2000;  107 2272-2277
  • 146 Wollstein G, Garway H eath DF, Poinoosawmy D. et al . Glaucomatous optic disc changes in the contralateral eye of unilateral normal pressure glaucoma patients.  Ophthalmology. 2000;  107 2267-2271
  • 147 Wollstein G, Garway-Heath D F, Hitchings R A. Identification of early glaucoma cases with the scanning laser ophthalmoscope.  Ophthalmology. 1998;  105 1557-1563
  • 148 Wu L L, Suzuki Y, Kunimatsu S. et al . Frequency doubling technology and confocal scanning ophthalmoscopic optic disc analysis in open-angle glaucoma with hemifield defects.  J Glaucoma. 2001;  10 256-260
  • 149 Zangwill L M, Bowd C, Berry C C. et al . Discriminating between normal and glaucomatous eyes using the Heidelberg Retina Tomograph, GDx Nerve Fiber Analyzer, and Optical Coherence Tomograph.  Arch Ophthalmol. 2001;  119 985-993
  • 150 Zangwill L M, Williams J, Berry C C. et al . A comparison of optical coherence tomography and retinal nerve fiber layer photography for detection of nerve fiber layer damage in glaucoma.  Ophthalmology. 2000;  107 1309-1315
  • 151 Zeimer R, Asrani S, Zou S. et al . Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study.  Ophthalmology. 1998;  105 224-231
  • 152 Zeyen T, Miglior S, Pfeiffer N. et al . Reproducibility of evaluation of optic disc change for glaucoma with stereo optic disc photographs.  Ophthalmology. 2003;  110 340-344

a. o. Univ.-Prof. Dr. Clemens Vass

Universitätsklinik für Augenheilkunde und Optometrie, Medizinische Universität Wien (Interimistische Leitung: a. o. Univ.-Prof. Dr. Andreas Wedrich)

Währinger Gürtel 18 - 20

A-1090 Wien

Austria

Email: clemens.vass@meduniwien.ac.at