Verfahren des quantitativen Ultraschalls (QUS) sind zukunftsträchtige Methoden für die Erfassung des Knochenstatus im Zusammenhang mit der Osteoporose. Technisch basieren die Methoden auf den Veränderungen von Geschwindigkeit und Amplitude eines sich durch den Knochen fortpflanzenden breitbandigen Ultraschallsignals. Allerdings ist die Ausbreitung von Ultraschallwellen im anisotropen Knochen komplex und nicht einfach beschreibbar. Die erhältlichen Geräte jedoch sind leicht zu handhaben, preisgünstig, mobil, frei von der Nutzung ionisierender Strahlung und haben daher Vorteile gegenüber konventionellen Densitometrieverfahren. Die vorliegende Übersichtsarbeit diskutiert die technischen Grundsätze, aktuelle Forschung, Möglichkeiten der klinischen Anwendungen, derzeitige Schwachpunkte und die Zukunftsaussichten dieses Verfahrens. Zum besseren Verständnis wird die Schallausbreitung im Kochen mithilfe einer Simulationssoftware dargestellt.
Abstract
Quantitative ultrasound (QUS) methods are promising tools for the assessment of the bone status in osteoporosis. The techniques are based on changes in speed and amplitude of a broadband ultrasound signal propagating through the bone. However, ultrasound propagation through the anisotropic bone is complex and cannot be described in a simple way. The devices are easy to use, inexpensive, portable, do not use ionizing radiation, and therefore have advantages compared to conventional densitometry. This review discusses the technical basics, current research, clinical applications, points of weakness, and future prospects of QUS. For better understanding ultrasound propagation through bone is visualized with a simulation software.
1
Gregg E W, Kriska A M, Salamone L M. et al .
The epidemiology of quantitative ultrasound: a review of the relationships with bone mass, osteoporosis and fracture risk.
Osteoporos Int.
1997;
7
89-99
4
Gluer C C, Wu C Y, Genant H K.
Broadband ultrasound attenuation signals depend on trabecular orientation: an in vitro study.
Osteoporos Int.
1993;
3
185-191
5
Lill H HP, Gowin W, Oestmann J W. et al .
Alters- und geschlechtsabhängige Knochenmineraldichteverteilung und mechanische Eigenschaften des proximalen Humerus.
Fortschr Röntgenstr.
2002;
174
1544-1550
6
Waldt S MN, Renger B, Lenzen H. et al .
Strukturanalyse hochauflösender Computertomogramme als ergänzendes Verfahren in der Osteoporosediagnostik: In-vitro-Untersuchungen an Wirbelsäulensegmenten.
Fortschr Rontgenstr.
1999;
171
136-142
7
Malich A, Mainz J, John S. et al .
Erste Ergebnisse der ultraschallbasierten Bestimmung der Schallabsorbtion und Schallgeschwindigkeit bei Kindern mit Asthma bronchiale.
Fortschr Röntgenstr.
2003;
175
366-373
11
Frost M L, Blake G M, Fogelman I.
Can the WHO criteria for diagnosing osteoporosis be applied to calcaneal quantitative ultrasound?.
Osteoporos Int.
2000;
11
321-330
12
Lochmuller E M, Eckstein F, Zeller J B. et al .
Comparison of quantitative ultrasound in the human calcaneus with mechanical failure loads of the hip and spine.
Ultrasound Obstet Gynecol.
1999;
14
125-133
13
Bouxsein M L, Radloff S E.
Quantitative ultrasound of the calcaneus reflects the mechanical properties of calcaneal trabecular bone.
J Bone Miner Res.
1997;
12
839-846
14
Hodgskinson R, Njeh C F, Currey J D. et al .
The ability of ultrasound velocity to predict the stiffness of cancellous bone in vitro.
Bone.
1997;
21
183-190
16
Bauer D C, Gluer C C, Cauley J A. et al .
Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study. Study of Osteoporotic Fractures Research Group.
Arch Intern Med.
1997;
157
629-634
17
Hans D, Dargent-Molina P, Schott A M. et al .
Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study.
Lancet.
1996;
348
511-514
18
Gluer C C.
Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. The International Quantitative Ultrasound Consensus Group.
J Bone Miner Res.
1997;
12
1280-1288
19
Hans D, Wu C, Njeh C F. et al .
Ultrasound velocity of trabecular cubes reflects mainly bone density and elasticity.
Calcif Tissue Int.
1999;
64
18-23
20
Njeh C F, Hans D, Wu C. et al .
An in vitro investigation of the dependence on sample thickness of the speed of sound along the specimen.
Med Eng Phys.
1999;
21
651-659
21
Chappard C, Camus E, Lefebvre F. et al .
Evaluation of error bounds on calcaneal speed of sound caused by surrounding soft tissue.
J Clin Densitom.
2000;
3
121-131
23
Barkmann R HM, Glüer C C.
Methoden der in vivo-Ultraschallmesstechnik am Skelett: Grundlagen und technische Realisierung.
J Miner Stoffwechs.
1999;
6
22-27
24
Wear K.
The effect of trabecular material properties on the frequency dependence of backscatter from cancellous bone.
J Acoust Soc Am.
2003;
114
66-65
25
Roux C RV, Porcher R, Kolta S. et al .
Ultrasonic backscatter and transmission parameters at the os calcis in postmenopausal osteoporosis.
J Bone Miner Res.
2001;
16
1353-1362
26
Cadossi R, Cane V.
Pathways of transmission of ultrasound energy through the distal metaphysis of the second phalanx of pigs: an in vitro study.
Osteoporos Int.
1996;
6
196-206
27
Wuster C, Albanese C, De Aloysio D. et al .
Phalangeal osteosonogrammetry study: age-related changes, diagnostic sensitivity, and discrimination power. The Phalangeal Osteosonogrammetry Study Group.
J Bone Miner Res.
2000;
15
1603-1614
28
Barkmann R, Lusse S, Stampa B. et al .
Assessment of the geometry of human finger phalanges using quantitative ultrasound in vivo.
Osteoporos Int.
2000;
11
745-755
29
Barkmann R, Rohrschneider W, Vierling M. et al .
German pediatric reference data for quantitative transverse transmission ultrasound of finger phalanges.
Osteoporos Int.
2002;
13
55-61
30
Barkmann R, Kantorovich E, Singal C. et al .
A new method for quantitative ultrasound measurements at multiple skeletal sites: first results of precision and fracture discrimination.
J Clin Densitom.
2000;
3
1-7
31
Bossy E TM, Laugier P.
Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: a 2D simulation study.
J Acoust Soc Am.
2002;
112
297-307
32
Moilanen P, Nicholson P H, Karkkainen T. et al .
Assessment of the tibia using ultrasonic guided waves in pubertal girls.
Osteoporos Int.
2003;
4
1020-1027
33
Thompson P WTJ, Oliver R, Fisher A.
Quantitative ultrasound (QUS) of the heel predicts wrist and osteoporosis related fractures in women age 45 - 75 years.
J Clin Densitom.
1998;
1
219-226
34
Stewart A, Torgerson D J, Reid D M.
Prediction of fractures in perimenopausal women: a comparison of dual energy x ray absorptiometry and broadband ultrasound attenuation.
Ann Rheum Dis.
1996;
55
140-142
35
Pluijm S M, Graafmans W C, Bouter L M. et al .
Ultrasound measurements for the prediction of osteoporotic fractures in elderly people.
Osteoporos Int.
1999;
9
550-556
36
Huang C, Ross P D, Yates A J. et al .
Prediction of fracture risk by radiographic absorptiometry and quantitative ultrasound: a prospective study.
Calcif Tissue Int.
1998;
63
380-384
37
Mele R, Masci G, Ventura V. et al .
Three-year longitudinal study with quantitative ultrasound at the hand phalanx in a female population.
Osteoporos Int.
1997;
7
550-557
38
WHO. World Health Organization, Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Vol. Report No.: WHO technical report series 843. Genua: WHO, 1994.
39
Faulkner K G, von Stetten E, Miller P.
Discordance in patient classification using T-scores.
J Clin Densitom.
1999;
2
343-350
40
Kanis J A, Gluer C C.
An update on the diagnosis and assessment of osteoporosis with densitometry. Committee of Scientific Advisors, International Osteoporosis Foundation.
Osteoporos Int.
2000;
11
192-202
42
Damilakis J, Perisinakis K, Gourtsoyiannis N.
Imaging ultrasonometry of the calcaneus: optimum T-score thresholds for the identification of osteoporotic subjects.
Calcif Tissue Int.
2001;
68
219-224
43
Knapp K M, Blake G M, Spector T D. et al .
Multisite quantitative ultrasound: precision, age- and menopause-related changes, fracture discrimination, and T-score equivalence with dual-energy X-ray absorptiometry.
Osteoporos Int.
2001;
12
456-464
44
Gluer C C, Barkmann R, Heller M.
Quantitative ultrasonic diagnosis for the assessment of osteoporosis.
Z Arztl Fortbild Qualitatssich.
2000;
94
461-468
45
Gonnelli S, Cepollaro C, Pondrelli C. et al .
Ultrasound parameters in osteoporotic patients treated with salmon calcitonin: a longitudinal study.
Osteoporos Int.
1996;
6
303-307
46
Jones P R, Hardman A E, Hudson A. et al .
Influence of brisk walking on the broadband ultrasonic attenuation of the calcaneus in previously sedentary women aged 30 - 61 years.
Calcif Tissue Int.
1991;
49
112-115
47
Naessen T, Mallmin H, Ljunghall S.
Heel ultrasound in women after long-term ERT compared with bone densities in the forearm, spine and hip.
Osteoporos Int.
1995;
5
205-210
48
Blake G M, Herd R J, Miller C G. et al .
Should broadband ultrasonic attenuation be normalized for the width of the calcaneus?.
Br J Radiol.
1994;
67
1206-1209
50
Jorgensen H L, Hassager C.
Improved reproducibility of broadband ultrasound attenuation of the os calcis by using a specific region of interest.
Bone.
1997;
21
109-112
51
Roux C, Fournier B, Laugier P. et al .
Broadband ultrasound attenuation imaging: a new imaging method in osteoporosis.
J Bone Miner Res.
1996;
11
1112-1118
52
Hans D, Schott A M, Arlot M E. et al .
Influence of anthropometric parameters on ultrasound measurements of Os calcis.
Osteoporos Int.
1995;
5
371-376