Zusammenfassung
Ziel: Nitroglycerin hat einen dilatativen Effekt auf die epikardialen Koronargefäße und erhöht den koronaren Blutfluss. Ziel dieser Studie war es zu untersuchen, ob die Applikation von Nitroglycerin erstens die Visualisierung der Koronararterien sowie zweitens die Detektion von Koronararterienstenosen bei der MR-Koronarangiographie verbessert. Methode: Bei 44 Patienten mit Verdacht auf eine koronare Herzkrankheit wurde an einem 1,5-Tesla-Gerät (Intera, Philips) eine MR-Koronarangiographie (MRCA) a) ohne und b) mit kontinuierlicher intravenöser Applikation von Nitroglycerin (2,5 mg/h) durchgeführt. Es wurde des Weiteren als Goldstandard eine konventionelle Katheter-Koronarangiographie durchgeführt. Es wurde eine EKG-getriggerte, fettunterdrückte Gradienten-Echosequenz mit Echtzeit-Gating der Zwerchfellbewegung eingesetzt (Turbo Field Echo, In-plane-Auflösung 0,70 × 0,79 mm², Akquisitionsfenster 80 ms). Die MRCAs ohne und mit Nitroglyceringabe wurden auf einer segmentalen Basis nach folgenden Kriterien evaluiert und verglichen: 1. Länge der visualisierten Koronarsegmente, 2. Durchmesser der Koronarien, 3. qualitative Beurteilung der Bildqualität auf einer 4-Punkte-Skala, 4. Detektion von Gefäßstenosen > 50 %. Ergebnisse: Die Evaluation der MRCAs ergab bei den Kriterien Länge und Durchmesser der Koronararterien sowie Bildqualität (2,1 ± 0,8 vs. 2,2 ± 0,7) und Stenosedetektion (Sensitivität: 77 vs. 82 %, Spezifität: 72 vs. 72 %, n = 40) keine signifikanten Unterschiede in den Messungen ohne und mit i. v. Applikation von Nitroglycerin (jeweils p > 0,05). Schlussfolgerungen: Bei der 3D-MR-Koronarangiographie mit Echtzeit-Navigatortechnik bringt die kontinuierliche intravenöse Applikation von Nitroglycerin weder eine verbesserte Darstellung der Koronararterien noch eine Verbesserung der Detektion von Koronararterienstenosen.
Abstract
Purpose: Nitroglycerin administration results in dilation of epicardial coronary vessels and in an increase in coronary blood flow, and has been suggested to improve MR coronary angiography. This study evaluates systematically whether administration of nitroglycerin improves the visualization of coronary arteries and, as a result, the detection of coronary artery stenosis during free breathing 3D coronary MR angiography. Materials and Methods: Coronary MR angiography was performed in 44 patients with suspected coronary artery disease at a 1.5 Tesla System (Intera, Philips Medical Systems) (a) with and (b) without continuous administration of intravenous nitroglycerin at a dose rate of 2.5 mg/h, using an ECG gated gradient echo sequence with real-time navigator correction (turbo field echo, in-plane resolution 0.70 × 0.79 mm², acquisition window 80 ms). Equivalent segments of the coronary arteries in the sequences with and without nitroglycerin were evaluated for visualized vessel length and diameter, qualitative assessment of visualization using a four point grading scale and detection of stenoses > 50 %. Catheter coronary angiography was used as a gold-standard. Results: No significant differences were found between scans with and without nitroglycerin as to average length of the contiguously visualized vessel length (p > 0.05) and diameter (p > 0.05). There was also no significant difference in the coronary MR angiography with and without nitroglycerin in the average qualitative assessment score of the visualization of LM, proximal LAD, proximal CX, and proximal and distal RCA (2.1 ± 0.8 and 2.2 ± 0.7; p > 0.05). Sensitivity (77 % [17/22] vs. 82 % [18/22] p > 0.05) and specificity (72 % [13/18] vs. 72 % [13/18] p > 0.05) for the detection of coronary artery stenosis also did not differ significantly between scans with and without intravenous administration of nitroglycerin. Conclusion: Administration of nitroglycerin does not improve visualization of the coronary arteries and detection of coronary artery stenosis in free breathing 3D coronary MR angiography.
Key words
Magnetic resonance (MR) - coronary-MR-angiography - coronary vessels - coronary artery disease - nitroglycerin
Literatur
1
Paulin S, von Schulthess G K, Fossel E. et al .
MR imaging of the aortic root and proximal coronary arteries.
Am J Roentgenol.
1987;
148
665-670
2
Sandstede J, Pabst T, Kenn W. et al .
Dreidimensionale MR-Koronarangiographie in Navigator-Technik zur Primärdiagnostik der koronaren Herzerkrankung: Vergleich zur konventionellen Koronarangiographie.
Fortschr Röntgenstr.
1999;
170
269-274
3
Cho Z H, Mun C W, Friedenberg R M.
NMR angiography of coronary vessels with 2-D planar image scanning.
Magn Reson Med.
1991;
20
134-143
4
Manning W J, Li W, Edelman R R.
A preliminary report comparing magnetic resonance coronary angiography with conventional angiography.
N Engl J Med.
1993;
328
828-832
5
Pennell D J, Keegan J. et al .
Magnetic resonance imaging of coronary arteries: technique and preliminary results.
Br Heart J.
1993;
70
315-326
6
Duerinckx A J, Urman M K.
Two-dimensional coronary MR angiography: analysis of initial clinical results.
Radiology.
1994;
193
731-732
7
Edelman R R, Manning W J, Burstein D. et al .
Coronary arteries: breath-hold MR angiography.
Radiology.
1991;
181
641-643
8
Sandstede J J, Pabst T, Beer M. et al .
Three-dimensional MR coronary angiography using the navigator technique compared with conventional coronary angiography.
Am J Roentgenol.
1999;
172
135-139
9
Li D, Kaushikkar S, Haacke E M. et al .
Coronary arteries: three-dimensional MR imaging with retrospective respiratory gating.
Radiology.
1996;
201
857-863
10
Huber A, Nikolaou K, Gonschior P. et al .
Navigator echo-based Respiratory gating for three-dimensional MR coronary angiography: Results from healthy volunteers and patients with proximal coronary artery stenosis.
Am J Roentgenol.
1999;
173
95-101
11
Stuber M, Botnar R, Danias P G. et al .
Submillimeter three-dimensional coronary MR angiography with real-time navigator correction: Comparison of navigator locations.
Radiology.
1999;
212
579-587
12
Stuber M, Botnar R M, Danias P G. et al .
Double-oblique free-breathing high resolution three-dimensional coronary magnetic resonance angiography.
J Am Coll Cardiol.
1999;
34 (2)
524-531
13
Spuentrup. et al .
MR-Koronarangiographie während freier Atmung mit 3D Steady-State Free Precession und radialer k-Raum Abtastung.
Fortschr Röntgenstr.
2003;
175
1330-1334
14
Sommer T, Hofer U, Hackenbroch M. et al .
Hochauflösende 3D-MR-Koronarangiographie in Echt-Zeit-Navigatortechnik: Ergebnisse aus 107 Patientenuntersuchungen.
Fortschr Röntgenstr.
2002;
174 (4)
459-466
15
Kim W Y, Danias P G, Stuber M. et al .
Coronary magnetic resonance angiography for the detection of coronary stenoses.
N Engl J Med.
2001;
345 (26)
1863-1189
16
Maintz D, Aepfelbacher F C, Kissinger K V. et al .
Coronary MR Angiography: Comparison of Quantitative and Qualitative Data from Four Techniques.
AJR Am J Roentgenol.
2004;
182 (2)
515-521
17
Barkhausen J, Hunold P, Jochims M. et al .
Vergleich von Gradienten-Echo und steady state free precession Sequenzen zur 3D-Navigator MR-Koronarangiographie.
Fortschr Röntgenstr.
2002;
174 (6)
725-730
18
Lambert C, Timothy G. et al .
Hemodynamik and Angiographic comparison of intravenous Nitroglycerin and Nicardipine mainly in subjects without coronary artery disease.
Am J Cardiol1993.
Cardiol1993;
71 (5)
420-423
19
Gensini G G, Kelly A E, Da C BC. et al .
Quantitative angiography: the measurement of coronary vasomobility in the intact animal and man.
Chest.
1971;
60 (6)
522-530
20
Bachmann K F, Gansser R E.
Nitroglycerin oral spray: evaluation of its coronary artery dilative action by quantitative angiography.
Am J Cardiol.
1988;
61 (9)
7E-11E
21
Pfister M, Seiler C, Fleisch M. et al .
Nitrate induced coronary vasodilatation: differential effects of sublingual application by capsule or spray.
Heart.
1998;
80 (4)
365-339
22
Feldman R L, Pepine C J, Conti C R.
Magnitude of dilatation of large and small coronary arteries of nitroglycerin.
Circulation.
1981;
64 (2)
324-333
23
Fischer S E, Wickline S A, Lorenz C H.
Novel real-time R-wave detection algorithm based on the vektorcardiogram for accurate gated magnetic resonance acquisitions.
Magn Reson Med.
1993;
30
191-200
24
Botnar R M, Stuber M, Danias P G. et al .
Improved coronary artery definition with T2-weighted, free-breathing, three-dimensional coronary MRA.
Circulation.
1999;
99 (24)
3139-3348
25
Brittain J H, Hu B S, Wright G A. et al .
Coronary angiography with magnetization-prepared T2 contrast.
Magn Reson Med.
1995;
33
689-696
26
Harrison R, Bronskill M J, Henkelmann R M.
Magnetization transfer and T2-Relaxation components in tissue.
Magn Reson Med.
1995;
33
490-496
27
Hofman M B, Wickline S A, Lorenz C H.
Quantification of in-plane motion of the coronary arteries during the cardiac cycle: implications for acquisition window duration for MR flow quantification.
J Magn Reson Imaging.
1998;
8 (3)
568-576
28
Wang Y, Riederer S J, Ehman R L.
Respiratory motion of the heart: kinematics and the implications for the spatial resolution in coronary imaging.
Magn Reson Med.
1995;
33 (5)
713-779
29
Scanlon P J, Faxon D P, Audet A M. et al .
ACC/AHA guidelines for coronary angiography. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Coronary Angiography). Developed in collaboration with the Society for Cardiac Angiography and Interventions.
J Am Coll Cardiol.
1999;
33 (6)
1756-1824
30
Abrams J.
Hemodynamic effects of nitroglycerin and long-acting nitrates.
Am Heart J.
1985;
110
216-224
31
Abrams J.
Mechanisms of action of the organic nitrates in the treatment of myocardial ischemia.
Am J Cardiol.
1992;
70 (8)
30B-42B
32
Abrams J.
The role of nitrates in coronary heart disease.
Arch Intern Med.
1995;
155 (4)
357-364
33
Sievert H, Bussmann W D, Selzer G. et al .
Coronary-dilating effect of minimal doses of nitroglycerin.
Z Kardiol.
1987;
76 (10)
626-669
34
Botnar R M, Stuber M, Danias P G. et al .
Coronary magnetic resonance angiography.
Cardiol Rev.
2001;
9 (2)
77-87
35
Danias P G, Manning W J.
Aktueller Stand der koronaren MR-Angiographie.
Herz.
2000;
25 (4)
431-449
36
Reiber J H, Goedhart B, Brand G J. et al .
Quantitative coronary arteriography: current status and future.
Heart Vessels.
1997;
Suppl 12
209-211
1 Ergebnisse dieser Arbeit sind Teil der Dissertationsschrift von Frau Cand. med. Kathrin Boote
Dr. med. Matthias Hackenbroch
Radiologische Universitätsklinik Bonn
Sigmund-Freud-Str. 25
53105 Bonn
Telefon: 02 28/2 87-58 70
eMail: matthias.hackenbroch@ukb.uni-bonn.de