Subscribe to RSS
DOI: 10.1055/s-2004-813310
© Karl Demeter Verlag im Georg Thieme Verlag KG Stuttgart · New York
Gentherapie durch einen RGD-modifizierten, hTERT-regulierten, TRAIL-exprimierenden adenoviralen Vektor in malignen Tumoren
Adenoviral Vector Expressing the TRAIL Gene Driven by the hTERT PromoterPublication History
Manuskript eingetroffen: 16.4.2004
Manuskript akzeptiert: 26.5.2004
Publication Date:
09 December 2004 (online)
Zusammenfassung
Hintergrund: Die Modifikation adenoviraler Vektoren mit einer Arg-Gly-Asp-(RGD-)Sequenz kann Resistenzentwicklungen umgehen und zu einer erhöhten Transfektion der Zelle führen. Wir konstruierten daher einen adenoviralen Vektor mit einer RGD-Sequenz, der das TRAIL-Gen, gesteuert von einem Human-Telomerase-Reverse-Transcriptase-(hTERT-)Promoter, exprimiert, und untersuchten seine zelltötende Aktivität in vitro und in vivo, wozu ein orthotopes Pankreastumormodel in Nacktmäusen etabliert wurde. Material und Methoden: Die Apoptoseinduktion des Vektors Ad/TRAIL-F/RGD wurde in humanen Zelllinien von hepatozellulären Karzinomen (Hep G2, Hep 3b), Pankreaskarzinomen (Panc-1, Capan-1) und Kolonkarzinomen (LOVO, SW 620) untersucht. Die Hemmung der Zellproliferation wurde mit einem XTT-Assay bestimmt, die GFP-Expression und Apoptoseinduktion mittels Durchflusszytometrie sowie TRAIL- und Caspase-8-Expression durch Western Blot-Analysen. In-vivo-Untersuchungen wurden in einem orthotopen Pankreastumormodel an Nu/nu-Nacktmäusen durchgeführt. Ergebnisse: Die Behandlung mit Ad/TRAIL-F/RGD und Ad/gTRAIL zeigte eine signifikant reduzierte Zellproliferation und deutliche Apoptoseinduktion im Vergleich zu den Kontrollgruppen in allen getesteten Zelllinien. Zusätzlich zeigten die mit Ad/TRAIL-F/RGD behandelten Tiere ein signifikant geringeres Tumorwachstum (p < 0,05) als die mit PBS oder einem Kontrollvektor behandelten Tiere. Schlussfolgerung: Unsere Ergebnisse zeigen bei der Verwendung des adenoviralen Vektors Ad/TRAIL-F/RGD in vitro eine signifikante Proliferationshemmung und deutliche Apoptoseinduktion in humanen Tumorzelllinien sowie eine signifikante Tumorwachstumshemmung in orthotop implantierten Pankreastumoren im Pankreasschwanz. Der Einsatz des adenoviralen Vektors Ad/TRAIL-F/RGD bei der Behandlung maligner Tumoren könnte in Zukunft eine Therapieoption darstellen.
Abstract
Background: Resistance can be overcome by modified adenoviral vectors containing an Arg-Gly-Asp (RGD) sequence. We constructed an adenoviral vector with RGD-modified fibers, expressing the TRAIL gene from the human telomerase reverse transcriptase (hTERT) promoter (designated Ad/TRAIL-F/RGD), and evaluated its antitumor activity in vitro and in vivo. Methods: The induction of apoptosis by the new vector Ad/TRAIL-F/RGD was evaluated in human carcinoma cells derived from hepatocellular carcinoma (Hep G2, Hep 3b), pancreatic carcinoma (Panc-1, Capan-1), and colon carcinoma (LOVO, SW 620). Cell viability was measured by the XTT assay and GFP expression and apoptosis induction by fluorescence-activated cell sorting (FACS) and Western blot. In vivo experiments were performed in an orthotopic pancreas tumor model in nu/nu nude mice. Results: Treatment with Ad/TRAIL-F/RGD and Ad/gTRAIL resulted in significantly reduced cell viability in comparison to PBS and Ad/CMV-GFP treatment in all examined human carcinoma cell lines. In addition, mice treated with Ad/TRAIL-F/RGD showed a significantly decreased tumor growth than both control groups. Conclusions: Our results suggest that Ad/TRAIL-F/RGD may become a potent therapeutic agent for the treatment of different human solid carcinomas.
Schlüsselwörter
Apoptose - Gentherapie - TRAIL - RGD - Adenovirus - Gentransfer
Key words
Apoptosis - gene therapy - TRAIL - RGD - adenovirus
- 1 Yeo C J, Cameron J L, Sohn T A. et al . Six hundred fifty consecutive Pancreaticoduodenectomies in the 1990 s: Pathology, Complications, and Outcomes. Ann Surg. 1997; 226 248-257
- 2 Yeo T P, Hruban R H, Leach S D. et al . Pancreatic Cancer. Curr Probl Cancer. 2002; 4 176-275
- 3 Ghung-Faye G A, Kerr D J, Young L S. et al . Gene therapy strategies for colon cancer. Mol Med Today. 2000; 6 82-87
- 4 Huang X, Lin T, Gu J. et al . Long-term tumor-free survival from treatment with the GFP-TRAIL fusion gene expressed from the hTERT promoter in breast cancer cells. Int J Oncol. 2003; 22 1241-1245
- 5 Zhang L, Gu J, Huang X. et al . Mechanisms involved in development of resistance to adenovirus-mediated proapoptotic gene therapy in DLD1 human colon cancer cell line. Gene Ther. 2002; 9 1262-1270
- 6 Kagawa S, He C, Gu J. et al . Antitumor activity and bystander effects of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene. Cancer Res. 2001; 61 3330-3338
- 7 Lin T, Gu J, Zhang L. et al . Targeted expression of green fluorescent potein/tumor necrosis factor-related apoptosis-inducing ligand fusion protein from human telomerase reverse transcriptase promoter elicits antitumor activity without toxic effects on primary human hepatocytes. Cancer Res. 2002; 62 3620-3625
- 8 Voelkel-Johnson C, King D L, Norris J S. Resistance of prostate cancer cells to soluble TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) can be overcome by doxorubicin or adenoviral delivery of full-length TRAIL. Cancer Gene Ther. 2002; 9 164-172
- 9 Jacob D, Schumacher G, Bahra M. et al . Targeted expression of GFP/TRAIL fusion protein from hTERT promoter elicits apoptosis in human lung cancer cells. J Cancer Res Clin Oncol. 2004; 130 (Supp 1) S160
- 10 Nitsch R, Bechmann I, Deisz R A. et al . Human brain-cell death induced by tumour-necrosis-factor-related apoptosis-inducing ligand (TRAIL). Lancet. 2000; 356 (9232) 827-828
- 11 Jo M, Kim T H, Seol D W. et al . Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat Med. 2000; 6 564-567
- 12 Gu J, Kagawa S, Takakura M. et al . Tumor-specific transgene expression from the human telomerase reverse transcriptase promoter enables targeting of the therapeutic effects of the bax gene to cancer. Cancer Res. 2000; 60 5359-5364
- 13 Koch P, Guo Z S, Kagawa S. et al . Augmenting transgene expression from carcinoembryonic antigen (CEA) promoter via a GAL4 gene regulatory system. Mol Ther. 2001; 3 278-283
- 14 Bergelson J M, Krithivas A, Celi L. et al . The murine CAR homolog is a receptor for coxsackie B virus and adenovirus. J Virol. 1998; 72 415-419
- 15 Pearson A S, Koch P E, Atkinson. et al . Factors limiting adenovirus-mediated gene transfer into human lung and pancreatic cancer cell lines. Clin Cancer Res. 1999; 5 4208-4213
- 16 Jee Y S, Lee S G, Lee J C. et al . Reduced expression of coxsackievirus and adenovirus receptor (CAR) in tumor tissue compared to normal epithelium in head and neck squamous cell carcinoma patients. Anticancer Res. 2002; 22 2629-2634
- 17 Dehari H, Ito Y, Nakamura T. et al . Enhanced antitumor effect of RGD fiber-modified adenovirus for gene therapy of oral cancer. Cancer Gene Ther. 2003; 10 75-85
- 18 Wu H, Seki T, Dimitriev et al. Double modification of adenovirus fiber with RGD and polylysine motifs improves coxsackievirus-adenovirus receptor-independent gene transfer efficiency. Human Gene Ther. 2002; 13 1647-1653
- 19 Kanerva A, Wang M, Bauerschmitz G J. et al . Gene transfer to ovarien cancer versus normal tissues with fiber-modified adenovirus. Mol Ther. 2002; 5 695-704
- 20 Nakamura T, Sato K, Hamada H. Effective gene transfer to human melanomas via integrin-targeted adenoviral vectors. Human Gene Ther. 2002; 13 613-626
- 21 Koizumi N, Mizuguchi H, Hosono T. et al . Efficient gene transfer by fiber-mutant adenoviral vectors containing RGD peptide. Biochim Biophys Acta. 2001; 1568 13-20
- 22 Fang B, Ji L, Bouvet M. et al . Evaluation of GAL4/TATA in vivo. Induction of transgene expression by adenovirally mediated gene codelivery. J Biol Chem. 1998; 27 4972-4975
- 23 Zhu H, Zhang L, Wu S. et al . Induction of S-phase arrest and p21 overexpression by a small molecule 2[[3-(2,3-dichlorophenoxy)propyl] amino]ethanol in correlation with activation of ERK. Oncogene. 2004; May (online publication)
- 24 Kim M, Sumerel L A, Belousova N. et al . The coxsackevirus and adenovirus receptor acts as a tumor suppressor in malignant glioma. Br J Cancer. 2003; 88 (9) 1411-1416
- 25 Lin T, Zhang L, Davis J. et al . Combination of TRAIL gene therapy and chemotherapy enhances antitumor and antimetastasis effects in chemosensitive and chemoresistant breast cancer. Mol Therapy. 2003; 8 441-448
- 26 Uchida H, Shinoura N, Kitayama J. et al . 5-Fluorouracil efficiently enhanced apoptosis induced by adenovirus-mediated transfer of caspase-8 in DLD-1 colon cancer cells. J Gene Medicine. 2003; 5 287-299
- 27 Sung M W, Yeh H C, Thung S N. et al . Intratumoral adenovirus-mediated suicide gene transfer for hepatic metastases from colorectal adenocarcinoma: results of a phase I clinical trial. Mol Therapy. 2001; 4 182-191
- 28 Swisher G S, Roth J A, Komaki R. et al . Induction of p53-regulated genes and tumor regression in lung cancer patients after intratumoral delivery od adenoviral p53 (INGN 201) and radiation therapy. Clin Cancer Res. 2003; 9 93-101
- 29 Roth J A. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat Med. 1996; 2 985-991
- 30 Habib N A, Sarraf C E, Mitry R R. et al . E1B-deleted adenovirus (dl1520) gene therapy for patients with primary and secondary liver tumors. Human Gene Therapy. 2001; 12 219-226
Dr. med. Dietmar Jacob
Klinik für Transplantations-, Viszeral- und Allgemeinchirurgie, Charité Campus-Virchow
Humboldt-Universität zu Berlin
Augustenburger Platz 1
13353 Berlin
Phone: ++ 49/30/4 50-55 20 01
Fax: ++ 49/30/4 50-55 29 00
Email: dietmar.jacob@charite.de