Zusammenfassung
Ziel: Neben zahlreichen etablierten Osteodensitometrieverfahren gilt die Digitale Radiogrammetrie (DXR) als zuverlässige Methode zur Bestimmung der kortikalen Knochenmineraldichte (DXR-BMD). Mithilfe dieser Studie erfolgt erstmals eine Evaluierung des Einflusses der Körperkonstitution auf die mittels DXR kalkulierte BMD gesunder Erwachsener. Methode: In einer prospektiven Studie an 246 Erwachsenen ohne klinisch-anamnestischen Hinweis auf eine die Knochenmineraldichte alternierende Erkrankung wurde eine Knochenmineraldichtemessung mittels DXR durchgeführt, wobei DXR-BMD, Metakarpal Index (MCI) und der Porositätsindex (PI) bestimmt und darüber hinaus Körpergröße, Körpergewicht sowie Body Mass Index (BMI) protokolliert wurden. Ergebnisse: Im Gesamtkollektiv und hinsichtlich der BMI-Gruppen besteht eine signifikante Assoziation zwischen Körpergröße (0,55 < R < 0,70, p < 0,01) als auch Körpergewicht (0,56 < R < 0,78, p < 0,01) und DXR-BMD; lediglich für die Übergewichtigen zeigt sich keine signifikante Korrelation von Körpergewicht zur DXR-BMD. Sowohl DXR-BMD als auch MCI zeigen eine signifikante Reduktion der relativen Mittelwerte von der übergewichtigen zur untergewichtigen Gruppe als auch zwischen normalgewichtigen und untergewichtigen Personen (p < 0,01). Die kortikale Porosität hingegen weist eine Abnahme bei steigendem Körpergewicht auf. Schlussfolgerungen: Korrespondierend zu den in zahlreichen Studien anhand der Dual Energy X-Ray Absorptiometrie (DXA) ermittelten Zunahmen der BMD mit steigendem Körpergewicht gelingt auch mittels DXR der Nachweis eines signifikanten Einflusses der Körperkonstitution auf die Knochenmineraldichte. Deshalb erscheint die DXR mit ihrem geringen Präzisions- und fehlendem Weichteilfehler geeignet, geringe Veränderungen der kortikalen BMD, beispielsweise im Verlauf einer Osteoporose, zu quantifizieren.
Abstract
Purpose: In addition to many established osteodensitometric techniques, digital radiogrammetry (DXR) is considered to be a reliable method for measuring the cortical bone mineral density (DXR-BMD). This study investigates the influence of body constitution on BMD of healthy adults as calculated by DXR. Materials and Methods: In a prospective study, 246 adults without bone affecting diseases in their clinical history underwent DXR for analysis and calculations of bone mineral density and determination of metacarpal index (MCI) and porosity index (PI). Height, weight and body mass index (BMI) were recorded for each patient. Results: For all individuals and for all BMI subgroups, both height (0.55 < R < 0.70, p < 0.01) and body weight (0.56 < R < 0.78, p < 0.01) correlated closely with DXR-BMD. Only in the over-weight group, no significant correlation was found between body weight and DXR-BMD. In addition, a significant reduction of the relative DXR-BMD and MCI values was observed between the over-weight and the under-weight group as well as between normal-weight and under-weight individuals (p < 0.01). Otherwise, cortical porosity decreased with increasing body weight. Conclusion: Similar to Dual Energy X-ray Absorptiometry-based studies (DXA), digital radiogrammetry measures an increase in BMD with increasing body weight. Therefore DXR, which provides a precise technique without influence of soft tissue, seems to be a promising technique for quantifying marginal alterations in cortical BMD as well for following the course of osteoporosis.
Key words
Digital X-ray radiogrammetry - bone mineral density - body mass index - osteoporosis
Literatur
1 Bartl R. (eds) .Osteoporose. Stuttgart; Thieme Verlag 2001
2
Cauley J A, Thompson D E, Ensrud K C. et al .
Risk of mortality following clinical fractures.
Osteoporos Int.
2000;
11
556-561
3
Mohr A, Barkmann R, Mohr C. et al .
Quantitative ultrasound for the diagnosis of osteoporosis.
Fortschr Röntgenstr.
2004;
176
610-617
4
Prentice A.
The relative contribution of diet and genotype to bone development.
Proc Nutr Soc.
2001;
60
45-52
5
Markus R.
Endogenous and nutritional factors affecting bone.
Bone.
1996;
18
11-13
6
Nguyen T V, Howard G M, Kelly P J.
Bone mass, lean mass and fat mass: same genes or same enviroment?.
Am J Epidemiol.
1998;
147
3-16
7
Hassager C, Christiansen C.
Influence of soft tissue body composition on bone mass and metabolism.
Bone.
1989;
10
415-419
8
Ravn P, Cizza G, Bjarnason N H. et al .
Low body mass index is an important risk factor for low bone mass and increased bone loss in early postmenopausal women.
J Bone Miner Res.
1999;
14
1622-1627
9
Ribot C, Tremollieres F, Pouilles J M. et al .
Obesity and postmenopausal bone loss: the influence of obesity on vertebral density and bone turnover in postmenopausal women.
Bone.
1987;
8
327-331
10
Van der Poort D JM, Geusens P P, Dinant G J.
Risk factors for osteoporosis related to their outcome: fractures.
Osteoporos Int.
2001;
12
630-638
11
Black D M, Steinbuch M, Palermo L. et al .
An assessment tool for predicting fracture risk in postmenopausal women.
Osteoporos Int.
2001;
15
519-528
12
Kannus P, Haapasalo H, Sankelo M. et al .
Effect of starting age of physical activity on mass in the dominant arm of tennis and squash players.
Ann Inter Med.
1995;
123
27-31
13
Munoz M T, Argente J.
Anorexia nervosa in female adolescents: endocrine and bone mineral density disturbances.
Eur J Endocrin.
2002;
147
275-286
14
Eastell R, Lambert H.
Diet and healthy bones.
Calcif Tissue Int.
2002;
70
400-404
15
Bonjour J P, Carrie A L, Ferrari S. et al .
Kalzium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial.
J Clin Invest.
1997;
99
1287-1294
16
Wosje K S, Specker B L.
Role of calcium in bone health during childhood.
Nutr Rev.
2000;
58
253-268
17
Barnett E, Nordin B.
The radiological diagnosis of osteoporosis: a new approach.
Clin Radiol.
1960;
11
166-174
18
Ward K A, Cotton J, Adams J E.
A technical and clinical evaluation of digital X-ray radiogrammetry.
Osteoporos Int.
2003;
14
389-395
19
Garrow J S, Webster J.
Quetelet-Index (W/H²) as a measure of fatness.
Int J Obes.
1985;
9
147-153
20
Jorgensen J T, Andersen P B, Rosholm A. et al .
Digital X-ray Radiogrammetry: a new appendicular bone densitometric method with high precision.
Clin Physiol.
2000;
5
330-335
21
Black D M, Palermo L, Sorensen T. et al .
A normative reference database study for Pronosco X-posure System™.
J Clin Densitom.
2001;
4
5-12
22
Malich A, Freesmeyer M G, Mentzel H J. et al .
Normative values of bone parameters of children and adolescents using digital computer-assisted radiogrammetry (DXR).
J Clin Densitom.
2003;
6
103-112
23
Böttcher J, Malich A, Pfeil A. et al .
Potential clinical relevance of digital radiogrammetry for quantification of periarticular bone demineralization in patients suffering from rheumatoid arthritis dependend on severity and compared with DXA.
Eur Radiol.
2004;
14
631-637
24
Rosholm A, Hyldstrup L, Baeksgaard L. et al .
Estimation of bone mineral density by Digital X-ray Radiogrammetry: theoretical background and clinical testing.
Osteoporos Int.
2001;
12
961-969
25
Svendsen O L, Hassager C, Skodt V. et al .
Impact of soft tissue on in vivo accuracy of bone mineral measurements in the spine, hip, forearm: a human cadaver study.
J Bone Miner Res.
1995;
10
868-873
26
Patel R, Blake G M, Rymer J. et al .
Long-term precision of DXA scanning assessed over seven years in forty postmenopausal women.
Osteoporos Int.
2000;
11
68-75
27
Bjarnason N H, Christiansen C.
The influence of thinness and smoking on bone loss and response to hormone replacement therapy in early postmenopausal women.
J Clin Endocrinol Metab.
2000;
85
590-596
28
Gerdhem P, Ringsberg K A, Akesson K. et al .
Influence of muscle strength, physical activity and weight on bone mass in a population-based sample of 1004 elderly women.
Osteoporos Int.
2003;
14
768-772
29
Sahin G, Polat G, Baethis S. et al .
Body composition, bone mineral density, and circulating leptin levels in postmenopausal Turkish women.
Rheumatol Int.
2003;
23
87-91
30
Kemmler W, Engelke K, Lauber D. et al .
Exercise effects on fitness and bone mineral density in early postmenopausal wome: 1-year EFOPS results.
Med Sci Sports Exerc.
2002;
34
2115-2123
31
Wüster C, Wenzler M, Kappes J. et al .
Digital X-ray Radiogrammetry as a clinical method for eastimating bone mineral density-A german reference database.
J Bone Miner Res.
2000;
15
298
32
Hyldstrup L, Nielsen S P.
The metacarpal index by digital X-ray radiogrammetry. Normative reference values and comparison with dual-X-ray absorptiometry.
J Clin Densitom.
2001;
4
299-306
33
Iwamoto J, Takeda T, Otani T. et al .
Age-related changes in cortical bone in women: metacarpal bone mass measurement study.
J Orthop Sci.
1998;
3
90-94
34
Bouxsein M L, Palermo L, Yeung C. et al .
Digital X-ray Radiogrammetry predicts hip, wrist and vertebral fracture risk in elderly women: A prospective analysis from the study of osteoporotic fractures.
Osteoporos Int.
2002;
13
358-365
35
Hyldstrup L, Jorgensen J T, Sorensen T K. et al .
Response of cortical bone to antiresorptive treatment.
Calcif Tissue Int.
2001;
68
135-139
Dr. med. Joachim Böttcher
Phone: 0 49(0)36 41/9 32 48 50
Fax: 0 49(0)36 41/9 32 48 52
Email: joachim.boettcher@med.uni-jena.de