Gesundheitswesen 2005; 67(1): 48-55
DOI: 10.1055/s-2004-813834
Originalarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Statistische Methoden für gemeindebezogene Studien - Darstellung und Vergleich von Lösungsmöglichkeiten unter besonderer Berücksichtigung statistischer Verfahren der Metaanalyse

Statistical Analysis of Community-Based Studies - Presentation and Comparison of Possible Solutions with Reference to Statistical Meta-Analytic MethodsD. Twardella1 , T. Bruckner1 , M. Blettner2
  • 1Universitätsklinikum Heidelberg, Abteilung Klinische Sozialmedizin, Heidelberg
  • 2Johannes-Gutenberg-Universität Mainz, Institut für Medizinische Biometrie, Epidemiologie und Informatik, Mainz
Wir möchten uns bei der Deutschen Forschungsgemeinschaft bedanken, die die vorliegende Arbeit finanziell unterstützt hat (Förderkennzeichen DI 806/1-1).
Further Information

Publication History

Publication Date:
25 January 2005 (online)

Preview

Zusammenfassung

Ziel der Studie: Die statistische Auswertung gemeindebezogener Studien bedarf ebenso wie die anderer Cluster-randomisierter Studien spezieller statistischer Methoden. An Daten aus der Deutschen Herz-Kreislauf-Präventionsstudie (DHP) verdeutlichen wir die Konsequenzen des Einsatzes unterschiedlicher statistischer Verfahren für die Studienergebnisse. Methodik: Es wurden Angaben von 30 285 Personen, die zu Studienbeginn und zu Studienende erhoben wurden, herangezogen. Die Daten stammten aus den 7 Interventionsregionen sowie aus dem jeweiligen Nationalen Untersuchungssurvey (NUS); die Daten aus dem NUS wurden von uns zu 7 Kontrollclustern gruppiert, um ein für Cluster-randomisierte Studien übliches Design nachzubilden. Am Beispiel des Gesamtcholesterinspiegels und des systolischen Blutdrucks wurden unterschiedliche statistische Modelle hinsichtlich des resultierenden Schätzers für den Interventionseffekt und dessen Konfidenzintervall verglichen: ein lineares Modell, ein gemischtes Modell sowie Fixed- und Random-effects-Metaanalysen. Ergebnisse: Während das gemischte Modell und die Metaanalyse mit zufälligen Effekten vergleichbare Schätzer und Konfidenzintervalle für den Interventionseffekt lieferten, waren Ergebnisse der Modelle mit ausschließlich festen Effekten antikonservativ. Insbesondere bezüglich des Interventionseffekts auf den systolischen Blutdruck, bei dem eine sehr starke Heterogenität zwischen den Clustern vorlag, wurde die Varianz in Modellen mit festen Effekten stark unterschätzt. Trotz scheinbar geringer Intracluster-Korrelation von 0,0019 für Gesamtcholesterin und 0,0166 für systolischen Blutdruck unterschied sich die Varianz des Interventionseffekts im gemischten Modell um das 2,8- bzw. 17,1fache von der Varianz im linearen Modell. Durch diese enorme Varianzinflation verlor der Interventionseffekt auf systolischen Blutdruck seine statistische Signifikanz. Schlussfolgerungen: Unsere Ergebnisse unterstreichen die Notwendigkeit, bei der Analyse gemeindebezogener Studien Korrelationen zu berücksichtigen. Neben dem gemischten Modell kann hierfür die Metaanalyse mit zufälligen Effekten als alternative Methode eingesetzt werden.

Abstract

Purpose: The statistical analysis of community-based trials and of other cluster-randomised trials, requires specific statistical methods. We show the consequences of the application of these models for study results, using data of the German Cardiovascular Prevention Study (GCP) as an example. Methods: Data of 30,285 subjects were analysed, which were collected at the beginning and at the end of the study period. These data had been collected in 7 intervention regions and by national surveys. We grouped data of the national surveys in 7 control clusters to mimick a design typical for cluster-randomised trials. We applied the following statistical models to estimate the effect of the intervention on total cholesterol as well as on systolic blood pressure and the respective confidence intervals: a linear model, a mixed model, and fixed and random effects meta-analyses. Results: While the estimates and confidence intervals for the intervention effect were similar in mixed model analysis and random effects meta-analysis, results from models incorporating fixed effects only were anti-conservative. The underestimation of variance in models incorporating fixed effects only was especially large in the analysis of systolic blood pressure data, where great heterogeneity between intervention communities was observed. Despite seemingly low intraclass correlation coefficients of 0.0019 for total cholesterol and 0.0166 for systolic blood pressure, respectively, the variance of the intervention effect was increased in the mixed model 2.8fold or 17.1fold, respectively, in comparison to the variance estimated in the linear model. Due to this variance inflation the intervention effect on systolic blood pressure lost statistical significance. Conclusion: Our results emphasise the importance to account for correlations in community-based trials. Besides the mixed model random effects meta-analysis can be applied as an alternative method.

Literatur

Thomas Bruckner

Abteilung Klinische Sozialmedizin, Universitätsklinikum Heidelberg

Bergheimerstr. 58

69115 Heidelberg

Phone: 0 62 21/56 87 53

Fax: 0 62 21/56 55 84

Email: Thomas.Bruckner@med.uni-heidelberg.de