Subscribe to RSS
DOI: 10.1055/s-2004-814211
PKA- and PKC-dependent Regulation of Angiopoietin 2 mRNA in Human Granulosa Lutein Cells
Publication History
Received 21 May 2003
Accepted after revision 29 October 2003
Publication Date:
05 March 2004 (online)

Abstract
New blood vessels develop from preexisting vessels in response to growth factors or hypoxic conditions. Recent studies have shown that angiopoietin 2 (ANGPT-2) plays an important role in the modulation of angiogenesis and vasculogenesis in humans and mice. The signaling pathways that lead to the regulation of ANGPT-2 are largely unclear. Here, we report that protein kinase C and protein kinase A activators (ADMB, 8-Cl-cAMP) increased the mRNA levels of ANGPT-2 in human Granulosa cells, whereas PKC and PKA Inhibitors (Rp-cAMP, GÖ 6983) decreased markedly the level of ANGPT-2 mRNA. Due to varying specificity of the modulators for certain protein kinases subunits, we conclude that the conventional PKCs, but not PKC α and β1, the atypical PKCs and the PKA I, are involved in the regulation of ANGPT-2. These findings may help to explain the role of both PKA and PKC dependent signaling cascades in the regulation of ANGPT-2 mRNA.
Key words
Protein kinase - Angiogenesis - ANGPT-2 - Corpus luteum
References
- 1 Fraser H M, Lunn S F. Angiogenesis and its control in the female reproductive system. Br Med Bull. 2000; 56 787-797
- 2 Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996; 86 353-364
- 3 Geva E, Jaffe R B. Role of angiopoietins in reproductive tract angiogenesis. Obstet Gynecol Surv. 2000; 55 511-519
- 4 Maisonpierre P C, Suri C, Jones P F, Bartunkova S, Wiegand S J, Radziejewski C. et al . Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997; 277 55-60
- 5 Asahara T, Chen D, Takahashi T, Fujikawa K, Kearney M, Magner M. et al . Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res. 1998; 83 233-240
- 6 Grammas P, Moore P, Cashman R E, Floyd R A. Anoxic injury of endothelial cells causes divergent changes in protein kinase C and protein kinase A signaling pathways. Mol Chem Neuropathol. 1998; 33 113-124
- 7 Summers B A, Overholt J L, Prabhakar N R. Augmentation of L-type calcium current by hypoxia in rabbit carotid body glomus cells: evidence for a PKC-sensitive pathway. J Neurophysiol. 2000; 84 1636-1644
- 8 Rosado E, Schwartz Z, Sylvia V L, Dean D D, Boyan B D. Transforming growth factor-beta1 regulation of growth zone chondrocytes is mediated by multiple interacting pathways. Biochim Biophys Acta. 2002; 1590 1-15
- 9 Keck C, Rajabi Z, Pfeifer K, Bettendorf H, Brandstetter T, Breckwoldt M. Expression of interleukin-6 and interleukin-6 receptors in human granulosa lutein cells. Mol Hum Reprod. 1998; 4 1071-1076
- 10 Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987; 162 156-159
- 11 Rothermel J D, Parker Botelho L H. A mechanistic and kinetic analysis of the interactions of the diastereoisomers of adenosine 3′,5′-(cyclic)phosphorothioate with purified cyclic AMP-dependent protein kinase. Biochem J. 1988; 251 757-762
- 12 Beebe S J, Beasley-Leach A, Corbin J D. cAMP analogs used to study low-Km, hormone-sensitive phosphodiesterase. Methods Enzymol. 1988; 159 531-540
- 13 Beebe S J, Segaloff D L, Burks D, Beasley-Leach A, Limbird L E, Corbin J D. Evidence that cyclic adenosine 3′,5′-monophosphate-dependent protein kinase activation causes pig ovarian granulosa cell differentiation, including increases in two type II subclasses of this kinase. Biol Reprod. 1989; 41 295-307
- 14 Cho-Chung Y S, Nesterova M, Becker K G, Srivastava R, Park Y G, Lee Y n. et al . Dissecting the circuitry of protein kinase A and cAMP signaling in cancer genesis: antisense, microarray, gene overexpression, and transcription factor decoy. Ann NY Acad Sci. 2002; 968 22-36
- 15 Indolfi C, Di Lorenzo E, Rapacciuolo A, Stingone A M, Stabile E, Leccia A. et al . 8-chloro-cAMP inhibits smooth muscle cell proliferation in vitro and neointima formation induced by balloon injury in vivo. J Am Coll Cardiol. 2000; 36 288-293
- 16 Oh H, Takagi H, Suzuma K, Otani A, Matsumura M, Honda Y. Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem. 1999; 274 15 732-15 739
- 17 Fujiyama S, Matsubara H, Nozawa Y, Maruyama K, Mori Y, Tsutsumi Y. et al . Angiotensin AT(1) and AT(2) receptors differentially regulate angiopoietin-2 and vascular endothelial growth factor expression and angiogenesis by modulating heparin binding-epidermal growth factor (EGF)-mediated EGF receptor transactivation. Circ Res. 2001; 88 22-29
- 18 Gschwendt M, Dieterich S, Rennecke J, Kittstein W, Mueller H J, Johannes F J. Inhibition of protein kinase C mu by various inhibitors. Differentiation from protein kinase c isoenzymes. FEBS Lett. 1996; 392 77-80
- 19 Martiny-Baron G, Kazanietz M G, Mischak H, Blumberg P M, Kochs G, Hug H. et al . Selective inhibition of protein kinase C isozymes by the indolocarbazole Go 6976. J Biol Chem. 1993; 268 9194-9197
- 20 Liebmann C. Regulation of MAP kinase activity by peptide receptor signaling pathway: paradigms of multiplicity. Cell Signal. 2001; 13 777-785
D. Pietrowski, Ph. D.
Universitäts-Frauenklinik Freiburg
Hugstetter Str. 55 · 79106 Freiburg · Germany ·
Phone: + 49 (761) 270-3126
Fax: + 49 (761) 270-3037
Email: pietrowski@frk.ukl.uni-freiburg.de