Abstract
Changes in both central and peripheral thyroid hormone (TH) metabolism occur during
illness. These changes, known collectively as non-thyroidal illness, are apparently
mediated by the proinflammatory cytokines IL-6, TNFα and IFNγ. IL-12 is involved in
regulation of IFNγ and TNFα. The aim of this study was to evaluate the role of IL-12
in TH metabolism during illness. We studied TH metabolism both centrally (in the pituitary)
and peripherally (in the liver) in IL-12 knock-out (IL-12-/-) and wild type (WT) mice during illness induced by administration of bacterial endotoxin
(LPS). LPS induced a similar decrease in serum T3, T4 and liver 5′-DI mRNA expression in IL-12-/- and WT mice with the exception of a smaller reduction of serum T4 in IL-12-/- mice. In the pituitary, the LPS-induced decline in 5′-DI activity in WT mice was
not observed in IL-12-/- mice (p < 0.001), whereas the decrease in DII activity tended to be smaller in IL-12-/- mice (p = 0.066). The lower decrease in pituitary activity of both DI and DII in
IL-12-/- mice is possibly related to the lower LPS-induced T4 decrease. In conclusion, IL-12 is involved in the central regulation of the HPT axis
during illness but not in the peripheral regulation.
Key words
5′-deiodinase - Pituitary - Liver - Cytokines - IL-12-/- mice
References
- 1 Wiersinga W M.
Nonthyroidal illness. In: Braverman LE, Utiger RD (eds) The Thyroid. Philadelphia; Lippincott 2000: 281-295
- 2
Docter R, Krenning E P, de Jong M, Hennemann G.
The sick euthyroid syndrome: changes in thyroid hormone serum parameters and hormone
metabolism.
Clin Endocrinol (Oxf).
1993;
39
499-518
- 3
Fliers E, Guldenaar S E, Wiersinga W M, Swaab D F.
Decreased hypothalamic thyrotropin-releasing hormone gene expression in patients with
nonthyroidal illness.
J Clin Endocrinol Metab.
1997;
82
4032-4036
- 4
van der Poll T, Romijn J A, Wiersinga W M, Sauerwein H P.
Tumor necrosis factor: a putative mediator of the sick euthyroid syndrome in man.
J Clin Endocrinol Metab.
1990;
71
1567-1572
- 5
Stouthard J M, van der Poll T, Endert E, Bakker P J, Veenhof C H, Sauerwein H P, Romijn J A.
Effects of acute and chronic interleukin-6 administration on thyroid hormone metabolism
in humans.
J Clin Endocrinol Metab.
1994;
79
1342-1346
- 6
Boelen A, Platvoet-ter Schiphorst M C, Wiersinga W M.
Association between serum interleukin-6 and serum 3,5,3′-triiodothyronine in nonthyroidal
illness.
J Clin Endocrinol Metab.
1993;
77
1695-1699
- 7
Boelen A, Maas M A, Lowik C W, Platvoet M C, Wiersinga W M.
Induced illness in interleukin-6 (IL-6) knock-out mice: a causal role of IL-6 in the
development of the low 3,5,3′-triiodothyronine syndrome.
Endocrinology.
1996;
137
5250-5254
- 8
Tang K T, Braverman L E, DeVito W J.
Tumor necrosis factor-alpha and interferon-gamma modulate gene expression of type
I 5′-deiodinase, thyroid peroxidase, and thyroglobulin in FRTL-5 rat thyroid cells.
Endocrinology.
1995;
136
881-888
- 9
Hashimoto H, Igarashi N, Miyawaki T, Sato T.
Effects of tumor necrosis factor-α, interleukin-1β, and interleukin-6 on type I iodothyronine
5′-deiodination in rat thyroid cell line, FRTL-5.
J Interferon Cytokine Res.
1995;
15
367-375
- 10
Ongphiphadhanakul B, Fang S L, Tang K T, Patwardhan N A, Braverman L E.
Tumor necrosis factor-α decreases thyrotropin-induced 5′-deiodinase activity in FRTL-5
thyroid cells.
Eur J Endocrinol.
1994;
130
502-507
- 11
Jakobs T C, Mentrup B, Schmutzler C, Dreher I, Köhrle J.
Proinflammatory cytokines inhibit the expression and function of human type I 5′-deiodinase
in HepG2 hepatocarcinoma cells.
Eur J Endocrinol.
2002;
146
559-566
- 12
Nagaya T, Fujieda M, Otsuka G, Yang J P, Okamoto T, Seo H.
A potential role of activated NF-kappa B in the pathogenesis of euthyroid sick syndrome.
J Clin Invest.
2000;
106
393-402
- 13
Na S Y, Lee S K, Han S J, Choi H S, Im S Y, Lee J W.
Steroid receptor coactivator-1 interacts with the p50 subunit and coactivates nuclear
factor kappaB-mediated transactivations.
J Biol Chem.
1998;
273
10 831-10 834
- 14
Yu J, Koenig R J.
Regulation of hepatocyte thyroxine 5′-deiodinase by T3 and nuclear receptor coactivators
as a model of the sick euthyroid syndrome.
J Biol Chem.
2000;
275
38 296-38 301
- 15
Ramadori G, Christ B.
Cytokines and the hepatic acute-phase response.
Semin Liver Dis.
1999;
19
141-155
- 16
Fasshauer M, Klein J, Lossner U, Paschke R.
Interleukin (IL)-6 mRNA expression is stimulated by insulin, isoprotererenol, tumour
necrosis factor alpha, growth hormone, and IL-6 in 3T3-L1 adipocytes.
Horm Metab Res.
2003;
35
147-152
- 17
Trinchieri G.
Interleukin-12: a cytokine at the interface of inflammation and immunity.
Adv Immunol.
1998;
70
83-243
- 18
Wiersinga W M, Chopra I J.
Radioimmunoassay of thyroxine (T4), 3,5,3′-triiodothyronine (T3), 3,3′,5′-triiodothyronine
(reverse T3, rT3), and 3,3′-diiodothyronine (T2).
Methods Enzymol.
1982;
84
272-303
- 19
Sweet M J, Leung B P, Kang D, Sogaard M, Schulz K, Trajkovic V, Campbell C C, Xu D,
Liew F Y.
A novel pathway regulating lipopolysaccharide-induced shock by ST2/T1 via inhibition
of Toll-like receptor 4 expression.
J Immunol.
2001;
166
6633-6639
- 20
Bouaboula M, Legoux P, Pessegue B, Delpech B, Dumont X, Piechaczyk M, Casellas P,
Shire D.
Standardization of mRNA titration using a polymerase chain reaction method involving
co-amplification with a multispecific internal control.
J Biol Chem.
1992;
267
21 830-21 838
- 21
Köhrle J, Rasmussen U B, Rokos H, Leonard J L, Hesch R D.
Selective affinity labeling of a 27-kDa integral membrane protein in rat liver and
kidney with N-bromoacetyl derivatives of L-thyroxine and 3,5,3′-triiodo-L-thyronine.
J Biol Chem.
1990;
265
6146-6154
- 22
Baur A, Bauer K, Jarry H, Köhrle J.
Effects of proinflammatory cytokines on anterior pituitary 5′-deiodinase type I and
type II.
J Endocrinol.
2000;
167
505-515
- 23
O’Mara B A, Dittrich W, Lauterio T J, St Germain D L.
Pretranslational regulation of type I 5′-deiodinase by thyroid hormones and in fasted
and diabetic rats.
Endocrinology.
1993;
133
1715-1723
- 24
Boelen A, Platvoet-ter Schiphorst M C, Bakker O, Wiersinga W M.
The role of cytokines in the lipopolysaccharide-induced sick euthyroid syndrome in
mice.
J Endocrinol.
1995;
146
475-483
- 25
Davies P H, Sheppard M C, Franklyn J A.
Inflammatory cytokines and type I 5′-deiodinase expression in phi1 rat liver cells.
Mol Cell Endocrinol.
1997;
129
191-198
- 26
Köhrle J.
Local activation and inactivation of thyroid hormones: the deiodinase family.
Mol Cell Endocrinol.
1999;
151
103-119
- 27
Köhrle J.
The selenoenzyme family of deiodinase isozymes controls local thyroid hormone availability.
Rev Endocr Metab Disord.
2000;
1
49-58
- 28
Baur A, Buchfelder M, Köhrle J.
Expression of 5′-deiodinase enzymes in normal pituitaries and in various human pituitary
adenomas.
Eur J Endocrinol.
2002;
147
263-268
- 29
Nakahira M, Ahn H J, Park W R, Gao P, Tomura M, Park C S, Hamaoka T, Ohta T, Kurimoto M,
Fujiwara H.
Synergy of IL-12 and IL-18 for IFN-gamma gene expression: IL-12-induced STAT4 contributes
to IFN-gamma promoter activation by up-regulating the binding activity of IL-18-induced
activator protein 1.
J Immunol.
2002;
168
1146-1153
- 30
Zhou Y C, Waxman D J.
STAT5b down-regulates peroxisome proliferator-activated receptorα transcription by
inhibition of ligand-independent activation function region-1 trans-activation domain.
J Biol Chem.
1999;
274
29 874-29 882
- 31
Forrest D, Reh T A, Rusch A.
Neurodevelopmental control by thyroid hormone receptors.
Curr Opin Neurobiol.
2002;
12
49-56
Dr. A. Boelen
Department of Endocrinology & Metabolism · F5-171, Academic Medical Center ·
Meibergdreef 9 · 1105 AZ Amsterdam · The Netherlands
Phone: + 31 (20) 566 57 49 ·
Email: a.boelen@amc.uva.nl