Zusammenfassung
Hintergund: Die morphologischen und elektrophysiologischen Folgen einer Ertaubung sind gut charakterisiert,
jedoch mangelt es an detaillierten Kenntnissen der molekularen Ursachen und Folgen
einer Ertaubung.
Methode: In dieser Studie wurden mittels der Gene-Array-Technik Änderungen der Genexpressionsmuster
in separierten Fraktionen der Cochlea und Colliculus inferior normalhörender und mit
10 % Neomycin ertaubter Ratten untersucht. RNA wurde aus dem Modiolus (Mo) und Sensorineuralem
Epithel/Laterale Wand (SnE/Lw) und Colliculus inferior (IC) präpariert, mit genspezifischen
Primern revers transkribiert, anschließend mit 32 P-dATP markiert und mit dem Atlas Rat 1,2 cDNA-Array hybridisiert.
Ergebnisse: Während im IC-Gewebe ertaubter Tiere die Transkriptionsniveaus der meisten Gene konstant
blieben, waren die meisten Änderungen der Genexpressionsniveaus im SnE/Lw-Gewebe nachweisbar.
Mittels der Gene-Array-Technologie konnten eine Reihe bekannter, jedoch überwiegend
unbekannter Innenohr-Gene detektiert werden.
Schlussfolgerungen: Insgesamt bietet die Gene-Array-Technik speziell für die Hörforschung mit ihrem limitierten
Untersuchungsmaterial eine geeignete Methode zur Expressionsanalyse tausender Gene
gleichzeitig und trägt damit zu einem umfassenderen Verständnis komplexer Regulationsmechanismen
im Innenohr bei. Weiterführende Untersuchungen möglicher Kandidatengene (Gene Screening)
könnten als Ansatzpunkt zukünftiger Therapiestrategien für das Innenohr eine große
Bedeutung erlangen.
Abstract
Background: The phenotype of deafness and its mechanisms are morphologically and electrophysiologically
well characterised. However, the molecular mechanisms and the consequences of deafness
are poorly understood.
Methods: In this study we investigated changes in gene expression profiles in subfractions
of the cochlea and the colliculus inferior, a non-cochlear tissue, of normal and deafened
(10 % Neomycin) rats using the gene-array-technology. RNA was prepared from modiolus
(Mo) und sensorineural epithel/lateral wall (SnE/Lw) und Colliculus inferior (IC),
reverse transcribed with gene specific primers, labeled with 32 P-dATP and hybridised with its complementary sequences of 1200 rat ESTs.
Results: Similar gene expression profiles were detected in Mo- and SnE/Lw in normal as well
in deafened rats differing significantly from those found in IC. In deafened animals
differences in mRNA levels were determined in IC for 8 genes, in Mo für 17 genes and
in SnE/Lw for 25 genes in comparison to those of normal rats. By using gene-arrays
many genes described in the literature previously could be detected. Otherwise most
of the genes found in the cochlea are unknown.
Conclusions: The gene-array-technology is a valuable tool in otological research for gene expression
analysis and, therefore, for comprehensive understanding of molecular processes in
the inner ear. Furthermore gene screening for candidate genes could be a big step
ahead in developing therapies of diseases of the inner ear.
Schlüsselwörter
Colliculus inferior - Gene-Arrays - Genexpressionsmuster - Innenohrtrauma - Modiolus
- Sensorineurales Epithel/Laterale Wand
Key words
Inferior colliculus - gene-arrays - gene expression profile - inner ear trauma - modiolus
- sensorineural epithel/lateral wall
Literatur
1
DeRisi J, Penland L, Brown P O, Bittner M L, Meltzer P S, Ray M, Chen Y, Su Y A, Trent J M.
Use of a cDNA microarray to analyse gene expression patterns in human cancer.
Nat Genet.
1996;
14
457-460
2
Lin J, Ozeki M, Javel E, Zhao Z, Pan W, Schlentz E, Levine S.
Identification of gene expression profiles in rat ears with cDNA microarrays.
Hear Res.
2003;
175
2-13
3
Chen Z Y, Corey D P.
Understanding inner ear development with gene expression profiling.
J Neurobiol.
2002;
53
276-285
4
Cho Y, Gong T W, Stöver T, Lomax M I, Altschuler R A.
Gene expression profiles of the rat cochlea, cochlear nucleus, and inferior colliculus.
J Assoc Res Otolaryngol.
2002;
3
54-67
5
Lomax M I, Huang L, Cho Y, Gong T W, Altschuler R A.
Differential display and gene arrays to examine auditory plasticity.
Hear Res.
2000;
147
293-302
6
Robertson N G, Khetarpal U, Gutierrez-Espeleta G A, Bieber F R, Morton C C.
Isolation of novel and known genes from a human fetal cochlear cDNA library using
subtractive hybridization and differential screening.
Genomics.
1994;
23
42-50
7
Mitchell A, Miller J M, Finger P A, Heller J W, Raphael Y, Altschuler R A.
Effects of chronic high-rate electrical stimulation on the cochlea and eighth nerve
in the deafened guinea pig.
Hear Res.
1997;
105
30-43
8
Fero M L, Rivkin M, Tasch M, Porter P, Carow C E, Firpo E, Polyak K, Tsai L H, Broudy V,
Perlmutter R M, Kaushansky K, Roberts J M.
A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and
female sterility in p27(Kip1)-deficient mice.
Cell.
1996;
85
733-744
9
Roberts J M.
Evolving ideas about cyclins.
Cell.
1999;
98
129-132
10
Sherr C J, Roberts J M.
CDK inhibitors: positive and negative regulators of G1-phase progression.
Genes Dev.
1999;
13
1501-1512
11
Löwenheim H, Furness D N, Kil J, Zinn C, Gültig K, Fero M L, Frost D, Gummer A W,
Roberts J M, Rubel E W, Hackney C M, Zenner H P.
Gene disruption of p27(Kip1) allows cell proliferation in the postnatal and adult
organ of corti.
Proc Natl Acad Sci U S A.
1999;
96
4084-4088
12
Uyemura K, Asou H, Takeda Y.
Structure and function of peripheral nerve myelin proteins.
Prog Brain Res.
1995;
105
311-318
13
Xu W, Manichella D, Jiang H, Vallat J M, Lilien J, Baron P, Scarlato G, Kamholz J,
Shy M E.
Absence of P0 leads to the dysregulation of myelin gene expression and myelin morphogenesis.
J Neurosci Res.
2000;
60
714-724
14
Keller M P, Chance P F.
Inherited peripheral neuropathy.
Semin Neurol.
1999;
19
353-362
15
Ionasescu V V, Searby C, Greenberg S A.
Dejerine-Sottas disease with sensorineural hearing loss, nystagmus, and peripheral
facial nerve weakness: de novo dominant point mutation of the PMP22 gene.
J Med Genet.
1996;
33
1048-1049
16
Roa B B, Warner L E, Garcia C A, Russo D, Lovelace R, Chance P F, Lupski J R.
Protein Myelin protein zero (MPZ) gene mutations in nonduplication type 1 Charcot-Marie-Tooth
disease.
Hum Mutat.
1996;
7
36-45
17
Kovach M J, Lin J P, Boyadjiev S, Campbell K, Mazzeo L, Herman K, Rimer L A, Frank W,
Llewellyn B, Wang J abs, Gelber D, Kimonis V E.
A unique point mutation in the PMP22 gene is associated with Charcot-Marie-Tooth disease
and deafness.
Am J Hum Genet.
1999;
64
1580-1593
18
Hess A, Michel O, Kopec T, Wittekindt C, Bloch W, Stennert E, Addicks K.
Detection of extracellular signal-regulated kinase1/2 in the inner ear of guinea pigs.
Neurosci Lett.
2000;
289
72-74
19
Han B H, Holtzman D M.
BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK
pathway.
J Neurosci.
2000;
20
5775-5781
20
Honda S, Nakajima K, Nakamura Y, Imai Y, Kohsaka S.
Rat primary cultured microglia express glial cell line-derived neurotrophic factor
receptors.
Neurosci Lett.
1999;
275
203-206
21
Kaplan A M, Vigna S R.
Gastric inhibitory polypeptide (GIP) binding sites in rat brain.
Peptides.
1994;
15
297-302
22
Yip R G, Wolfe M M.
GIP biology and fat metabolism.
Life Sci.
2000;
66
91-103
23
Hayzer D J, Brinson E, Runge M S.
A rat beta-interferon-induced mRNA: sequence characterization.
Gene.
1992;
117
277-278
24
Hu J, You S, Li W, Wang D, Nagpal M L, Mi Y, Liang P, Lin T.
Expression and regulation of interferon-gamma-inducible protein 10 gene in rat Leydig
cells.
Endocrinology.
1998;
139
3637-3645
25
Arnheiter H, Meier E.
Mx proteins: antiviral proteins by chance or by necessity?.
New Biol.
1990;
2
851-857
26
Cadoni G, Marinelli L, de Santis A, Romito A, Manna R, Ottaviani F.
Sudden hearing loss in a patient hepatitis C virus (HCV) positive on therapy with
alpha-interferon: a possible autoimmune-microvascular pathogenesis.
J Laryngol Otol.
1998;
112
962-963
27
Segade F, Gomez-Marquez J.
Prothymosin alpha.
Int J Biochem Cell Biol.
1999;
31
1243-1248
28
Zimmermann C E, Burgess B J, Nadol J B .
Patterns of degeneration in the human cochlear nerve.
Hear Res.
1995;
90
192-201
29
Halazonetis T D, Georgopoulos K, Greenberg M E, Leder P.
c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding
affinities.
Cell.
1988;
55
917-924
30
Hocevar B A, Howe P H.
Regulation of AP-1 activity by TGF-beta.
Methods Mol Biol.
2000;
142
97-108
31
Ogita K, Matsunobu T, Schacht J.
Acoustic trauma enhances DNA binding of transcription factor AP-1 in the guinea pig
inner ear.
Neuroreport.
2000;
11
859-862
32
Pirvola U, Xing-Qun L, Virkkala J, Saarma M, Murakata C, Camoratto A M, Walton K M,
Ylikoski J.
Rescue of hearing, auditory hair cells, and neurons by CEP-1347/KT7515, an inhibitor
of c-Jun N-terminal kinase activation.
J Neurosci.
2000;
20
43-50
33
Schulze-Osthoff K, Ferrari D, Los M, Wesselborg S, Peter M E.
Apoptosis signaling by death receptors.
Eur J Biochem.
1998;
254
439-459
Priv.-Doz. Dr. med. Timo Stöver
Medizinische Hochschule Hannover · Klinik für Hals-Nasen-Ohrenheilkunde
OE 6500 · Carl-Neuberg-Straße 1 · 30625 Hannover
eMail: Stoever.Timo@MH-Hannover.de