Abstract
Anatomical imaging modalities (such as computed tomography [CT] or magnetic resonance imaging [MRI]) and functional imaging modalities (that is, nuclear medicine) are used in the evaluation of adrenal glands. The use of CT (unenhanced, followed by contrast-enhanced) evaluation is the cornerstone of imaging of adrenal tumors. Attenuation values of less than 10 Hounsfield units at unenhanced CT are practically diagnostic for adenomas, while attenuation values of greater than 10 HU are not diagnostic of metastatic disease since non-metastatic disease is also a possibility. When lesions cannot be characterized adequately with CT, MRI evaluation (with T1 and T2-weighted sequences and chemical shift and fat-suppression refinements) is sought. Functional nuclear medicine imaging can be of utility in the evaluation of adrenal masses, more particularly for lesions not adequately characterized with CT and MRI. Nuclear medicine techniques are based on physiological and pathophysiological processes (cellular metabolism, tissue perfusion and local synthesis, uptake, storage of hormones and their receptors). Functional imaging aids initial preoperative staging, diagnostic evaluation of suspicious lesions, identification of metastatic or recurrent tumors, refining prognosis, and deciding on and predicting responses to therapy. [131 I]-6-iodomethyl norcholesterol scintigraphy can differentiate adenomas from carcinomas. Pheochromocytomas appear as areas of abnormal/increased [131 I]- and [123 I]-meta-iodobenzylguanidine uptake. Our experience has shown that [18 F]-fluorodopamine is an excellent agent for localizing adrenal and extra-adrenal pheochromocytomas.
Key words
Adrenal Gland Neoplasms - Radionuclide imaging - Magnetic resonance imaging - Emission-computed tomography - X-Ray computed tomography
References
1
Mayo-Smith W W, Boland G W, Noto R B, Lee M J.
State-of-the-art adrenal imaging.
Radiographics.
2001;
21
995-1012
2
Bornstein S R, Stratakis C A, Chrousos G P.
Adrenocortical tumors: recent advances in basic concepts and clinical management.
Ann Intern Med.
1999;
130
759-771
3
Grumbach M M, Biller B M, Braunstein G D, Campbell K K, Carney J A, Godley P A, Harris E L, Lee J K, Oertel Y C, Posner M C, Schlechte J A, Wieand H S.
Management of the clinically inapparent adrenal mass (”incidentaloma”).
Ann Intern Med.
2003;
138
424-429
4
Lockhart M E, Smith J K, Kenney P J.
Imaging of adrenal masses.
Eur J Radiol.
2002;
41
95-112
5
Caoili E M, Korobkin M, Francis I R, Cohan R H, Platt J F, Dunnick N R, Raghupathi K I.
Adrenal masses: characterization with combined unenhanced and delayed enhanced CT.
Radiology.
2002;
222
629-633
6
Korobkin M, Brodeur F J, Francis I R, Quint L E, Dunnick N R, Londy F.
CT time-attenuation washout curves of adrenal adenomas and nonadenomas.
AJR Am J Roentgenol.
1998;
170
747-752
7
Dunnick N R, Korobkin M.
Imaging of adrenal incidentalomas: current status.
AJR Am J Roentgenol.
2002;
179
559-568
8
Thompson G B, Young W F Jr.
Adrenal incidentaloma.
Curr Opin Oncol.
2003;
15
84-90
9
Young W F.
Primary Aldosteronism - Changing Concepts in Diagnosis and Treatment.
Endcrinology.
2003;
144
2208-2213
10
Ng L, Libertino J M.
Adrenocortical carcinoma: diagnosis, evaluation and treatment.
J Urol.
2003;
169
5-11
11
Pacak K, Linehan W M, Eisenhofer G, Walther M M, Goldstein D S.
Recent advances in genetics, diagnosis, localization, and treatment of pheochromocytoma.
Ann Intern Med.
2001;
134
315-329
12 Sohaib S AA, Bomanji J, Evanson J, Reznek R H. Imaging of the endocrine system. In: Grainger R, Allison D, Adam A, Dixon A (eds) Diagnostic radiology: a textbook of medical imaging. London; Churchill Livingstone, Fourth ed 2001: 1367-1399
13
Bertherat J, Mosnier-Pudar H, Bertagna X.
Adrenal incidentalomas.
Curr Opin Oncol.
2002;
14
58-63
14
Ruffini V, Saletnich I, Troncone L.
Radiocholesterol scintigraphy in Cushing’s syndrome.
Rays.
1992;
17
40-48
15
Yun M, Kim W, Alnafisi N, Lacorte L, Jang S, Alavi A.
18F-FDG PET in characterizing adrenal lesions detected on CT or MRI.
J Nucl Med.
2001;
42
1795-1799
16
Erasmus J J, Patz E F, McAdams H P, Murray J G, Herndon J, Coleman R E, Goodman P C.
Evaluation of adrenal masses in patients with bronchogenic carcinoma using 18F-fluorodeoxyglucose positron emission tomography.
AJR Am J Roentgenol.
1997;
168
1357-1360
17
Becherer A, Vierhapper H, Potzi C, Karanikas G, Kurtaran A, Schmaljohann J, Staudenherz A, Dudczak R, Kletter K.
FDG-PET in adrenocortical carcinoma.
Cancer Biother Radiopharm.
2001;
16
289-295
18
Fujita A, Hyodoh H, Kawamura Y, Kanegae K, Furuse M, Kanazawa K.
Use of fusion images of I-131 metaiodobenzylguanidine, SPECT and magnetic resonance studies to identify a malignant pheochromocytoma.
Clin Nucl Med.
2000;
25
440-442
19
Bravo E L, Tagle R.
Pheochromocytoma: state-of-the-art and future prospects.
Endocr Rev.
2003;
24
539-553
20
van der Harst E, de Herder W W, Bruining H A, Bonjer H J, de Krijger R R, Lamberts S W, van de Meiracker A H, Boomsma F, Stijnen T, Krenning E P, Bosman F T, Kwekkeboom D J.
[(123)I]metaiodobenzylguanidine and [(111)In]octreotide uptake in benign and malignant pheochromocytomas.
J Clin Endocrinol Metab.
2001;
86
685-693
21
Maurea S, Klain M, Caraco C, Ziviello M, Salvatore M.
Diagnostic accuracy of radionuclide imaging using 131I nor-cholesterol or meta-iodobenzylguanidine in patients with hypersecreting or non-hypersecreting adrenal tumours.
Nucl Med Commun.
2002;
23
951-960
22
Letizia C, De Toma G, Massa R, Corsi A, Caliumi C, Subioli S, D’Erasmo E.
False-positive diagnosis of adrenal pheochromocytoma on iodine-123-MIBG scan.
J Endocrinol Invest.
1998;
21
779-783
23
Pacak K, Eisenhofer G, Carrasquillo J A, Chen C C, Li S T, Goldstein D S.
6-[18F]fluorodopamine positron emission tomographic (PET) scanning for diagnostic localization of pheochromocytoma.
Hypertension.
2001;
38
6-8
24
Ilias I, Yu J, Carrasquillo J, Chen C, Eisenhofer G, Whatley M, McElroy M, Pacak K.
Superiority of 6-[18F]-fluorodopamine positron emission tomography versus [131I]-metaiodobenzylguanidine scintigraphy in the localization of metastatic pheochromocytoma.
J Clin Endocrinol Metab.
2003;
88
4083-4087
25
Namimoto T, Yamashita Y, Mitsuzaki K, Nakayama Y, Makita O, Kadota M, Takahashi M.
Adrenal masses: quantification of fat content with double-echo chemical shift in-phase and opposed-phase FLASH MR images for differentiation of adrenal adenomas.
Radiology.
2001;
218
642-646
26
Mantero F, Terzolo M, Arnaldi G, Osella G, Masini A M, Ali A, Giovagnetti M, Opocher G, Angeli A.
A survey on adrenal incidentaloma in Italy. Study Group on Adrenal Tumors of the Italian Society of Endocrinology.
J Clin Endocrinol Metab.
2000;
85
637-644
27
Israel G M, Krinsky G A.
MR imaging of the kidneys and adrenal glands.
Endocrinol Metab Clin NA.
2003;
41
145-159
28
Dwamena B A, Kloos R T, Fendrick A M, Gross M D, Francis I R, Korobkin M T, Shapiro B.
Diagnostic evaluation of the adrenal incidentaloma: decision and cost- effectiveness analyses.
J Nucl Med.
1998;
39
707-712
29
Gross M D, Shapiro B, Francis I R, Glazer G M, Bree R L, Arcomano M A, Schteingart D E, McLeod M K, Sanfield J A, Thompson N W.
Scintigraphic evaluation of clinically silent adrenal masses.
J Nucl Med.
1994;
35
1145-1152
30
Lumachi F, Zucchetta P, Marzola M C, Bui F, Casarrubea G, Angelini F, Favia G.
Usefulness of CT scan, MRI and radiocholesterol scintigraphy for adrenal imaging in Cushing’s syndrome.
Nucl Med Commun.
2002;
23
469-473
31
Kreissig R, Amthauer H, Krude H, Steinmueller P, Stroszczynski C, Hosten N, Grueters A, Felix R.
The use of FDG-PET and CT for the staging of adrenocortical carcinoma in children.
Pediatr Radiol.
2000;
30
306
K. Pacak, M. D., Ph. D., D. Sc.
Unit of Clinical Neuroendocrinology · PREB · NICHD · NIH · Building 10 Room 9D42
MSC-1583 · 10 Center Drive · Bethesda · Maryland 20892 · USA ·
Phone: + 1 (301) 402-4594
Fax: + 1 (301) 402-4712
Email: karel@mail.nih.gov