Horm Metab Res 2004; 36(6): 392-396
DOI: 10.1055/s-2004-814584
Review
© Georg Thieme Verlag Stuttgart · New York

Role of the Inhibin/Activin System and Luteinizing Hormone in Adrenocortical Tumorigenesis

F.  Beuschlein 1 , B.  D.  Looyenga 2 , M.  Reincke 1 , G.  D.  Hammer 2
  • 1Division of Endocrinology and Metabolism, Department of Internal Medicine II, Klinikum der Albert-Ludwigs-Universität, Freiburg, Germany
  • 2Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
Weitere Informationen

Publikationsverlauf

Received 18 December 2003

Accepted without Revision 27 February 2004

Publikationsdatum:
07. Juli 2004 (online)

Abstract

Adrenal masses are one of the most common endocrine tumors diagnosed. Although most adrenal tumors are inactive adenomas, a considerable proportion is associated with hormonal hyperfunction and/or malignancy. The adrenocortical carcinoma (ACC) is a rare but highly malignant tumor. Most ACCs in adults are diagnosed in an advanced tumor stage limiting therapeutic options. Accordingly, despite some progress in diagnostic and therapeutic approaches, the overall survival rate of patients with ACC remains poor. However, the prerequisite for the development of new diagnostic tools and therapeutic options in the management of patients with ACC is the elucidation of the molecular pathogenesis of adrenal tumorigenesis. Although our understanding of adrenal tumor biology has increased substantially over the last decades, the regulation of many molecular pathways involved in adrenocortical growth and differentiation awaits further elucidation. Luteinizing hormone (LH) and activin have only recently emerged as hormones likely to play opposite roles in adrenocortical hormone secretion and cellular proliferation. Recent evidence from studies on human surgical tumor sample expression and detailed characterization of murine adrenal tumor models suggests stimulatory effects of LH on adrenocortical growth and function. On the contrary, activin, which plays a critical role as a paracrine and autocrine factor regulating cellular growth and differentiation, has been demonstrated to induce apoptosis and suppress proliferation in the human and murine adrenal cortex. In this review, we will summarize molecular and functional aspects of adrenal tumorigenesis and highlight some prospects for future clinical applications.

References

  • 1 Kloos R T, Gross M D, Francis I R, Korobkin M, Shapiro B. Incidentally discovered adrenal masses.  Endocr Rev. 1995;  16 460-484
  • 2 Mantero F, Terzolo M, Arnaldi G, Osella G, Masini A M, Ali A, Giovagnetti M, Opocher G, Angeli A. A survey on adrenal incidentaloma in Italy. Study Group on Adrenal Tumors of the Italian Society of Endocrinology.  J Clin Endocrinol Metab. 2000;  85 637-644
  • 3 Lipsett M B, Hertz R, Ross G T. Clinical and pathophysiologic aspects of adrenocortical carcinoma.  Am J Med. 1963;  35 374
  • 4 Dohna M, Reincke M, Mincheva A, Allolio B, Solinas-Toldo S, Lichter P. Adrenocortical carcinoma is characterized by a high frequency of chromosomal gains and high-level amplifications.  Genes Chromosomes Cancer. 2000;  28 145-152
  • 5 Ahlman H, Khorram-Manesh A, Jansson S, Wangberg B, Nilsson O, Jacobsson C E, Lindstedt S. Cytotoxic treatment of adrenocortical carcinoma.  World J Surg. 2001;  25 927-933
  • 6 Ng L, Libertino J M. Adrenocortical carcinoma: diagnosis, evaluation and treatment.  J Urol. 2003;  169 5-11
  • 7 Wooten M D, King D K. Adrenal cortical carcinoma. Epidemiology and treatment with mitotane and a review of the literature.  Cancer. 1993;  72 3145-3155
  • 8 Luton J P, Cerdas S, Billaud L, Thomas G, Guilhaume B, Bertagna X, Laudat M H, Louvel A, Chapuis Y, Blondeau P. et al . Clinical features of adrenocortical carcinoma, prognostic factors, and the effect of mitotane therapy.  N Engl J Med. 1990;  322 1195-1201
  • 9 Malkin D, Li F P, Strong L C, Fraumeni J F, Nelson C E, Kim D H, Kassel J, Gryka M A, Bischoff F Z, Tainsky M A. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms.  Science. 1990;  250 1233-1238
  • 10 Wiedemann H R. Complexe malformatif familial avec hernie ombilicale et macroglossie - un syndrome nouveau?.  J Genet Hum. 1964;  13 223-232
  • 11 Hsing A W, Nam J M, Co Chien H T, McLaughlin J K, Fraumeni J F . Risk factors for adrenal cancer: an exploratory study.  Int J Cancer. 1996;  65 432-436
  • 12 Pommier R F, Brennan M F. An eleven-year experience with adrenocortical carcinoma.  Surgery. 1992;  112 963-970; discussion 970 - 961
  • 13 Venkatesh S, Hickey R C, Sellin R V, Fernandez J F, Samaan N A. Adrenal cortical carcinoma.  Cancer. 1989;  64 765-769
  • 14 Decker R A, Elson P, Hogan T F, Citrin D L, Westring D W, Banerjee T K, Gilchrist K W, Horton J. Eastern Cooperative Oncology Group study 1879: mitotane and adriamycin in patients with advanced adrenocortical carcinoma.  Surgery. 1991;  110 1006-1013
  • 15 Bukowski R M, Wolfe M, Levine H S, Crawford D E, Stephens R L, Gaynor E, Harker W G. Phase II trial of mitotane and cisplatin in patients with adrenal carcinoma: a Southwest Oncology Group study.  J Clin Oncol. 1993;  11 161-165
  • 16 Vale W, Rivier J, Vaughan J, McClintock R, Corrigan A, Woo W, Karr D, Spiess J. Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid.  Nature. 1986;  321 776-779
  • 17 Spencer S J, Mesiano S, Lee J Y, Jaffe R B. Proliferation and apoptosis in the human adrenal cortex during the fetal and perinatal periods: implications for growth and remodeling.  J Clin Endocrinol Metab. 1999;  84 1110-1115
  • 18 Billiar R B, Leavitt M G, Smith P, Albrecht E D, Pepe G J. Functional capacity of fetal zone cells of the baboon fetal adrenal gland: a major source of alpha-inhibin.  Biol Reprod. 1999;  61 142-146
  • 19 Arola J, Liu J, Heikkila P, Voutilainen R, Kahri A. Expression of inhibin alpha in the human adrenal gland and adrenocortical tumors.  Endocr Res. 1998;  24 865-867
  • 20 Woodruff T, Krummen L, Chen S, Lyon R, Hansen S, DeGuzman G, Covello R, Mather J, Cossum P. Pharmacokinetic profile of recombinant human (rh) inhibin A and activin A in the immature rat. II. Tissue distribution of [125I]rh-inhibin A and [125I]rh-activin A in immature female and male rats.  Endocrinology. 1993;  132 725-734
  • 21 Vanttinen T, Kuulasmaa T, Liu J, Voutilainen R. Expression of activin/inhibin receptor and binding protein genes and regulation of activin/inhibin peptide secretion in human adrenocortical cells.  J Clin Endocrinol Metab. 2002;  87 4257-4263
  • 22 Spencer S J, Rabinovici J, Mesiano S, Goldsmith P C, Jaffe R B. Activin and inhibin in the human adrenal gland. Regulation and differential effects in fetal and adult cells.  J Clin Invest. 1992;  90 142-149
  • 23 Spencer S J, Rabinovici J, Jaffe R B. Human recombinant activin-A inhibits proliferation of human fetal adrenal cells in vitro.  J Clin Endocrinol Metab. 1990;  71 1678-1680
  • 24 Pangas S A, Woodruff T K. Activin signal transduction pathways.  Trends Endocrinol Metab. 2000;  11 309-314
  • 25 Lewis K A, Gray P C, Blount A L, MacConell L A, Wiater E, Bilezikjian L M, Vale W. Betaglycan binds inhibin and can mediate functional antagonism of activin signalling.  Nature. 2000;  404 411-414
  • 26 Chong H, Pangas S A, Bernard D J, Wang E, Gitch J, Chen W, Draper L B, Cox E T, Woodruff T K. Structure and expression of a membrane component of the inhibin receptor system.  Endocrinology. 2000;  141 2600-2607
  • 27 Bernard D J, Chapman S C, Woodruff T K. Mechanisms of inhibin signal transduction.  Recent Prog Horm Res. 2001;  56 417-450
  • 28 Lacroix A, Hamet P, Boutin J M. Leuprolide acetate therapy in luteinizing hormone-dependent Cushing's syndrome.  N Engl J Med. 1999;  341 1577-1581
  • 29 Feelders R A, Lamberts S WJ, Hofland L J, van Koetsveld P M, Verhoef-Post M, Themmen A PN, de Jong F H, Bonjer H J, Clark A J, van der Lely A-J, de Herder W W. Luteinizing Hormone (LH)-Responsive Cushing's Syndrome: The Demonstration of LH Receptor Messenger Ribonucleic Acid in Hyperplastic Adrenal Cells, which Respond to Chorionic Gonadotropin and Serotonin Agonists in Vitro.  J Clin Endocrinol Metab. 2003;  88 230-237
  • 30 Millington D S, Golder M P, Cowley T, London D, Roberts H, Butt W R, Griffiths K. In vitro synthesis of steroids by a feminising adrenocortical carcinoma: effect of prolactin and other protein hormones.  Acta Endocrinol (Copenh). 1976;  82 561-571
  • 31 Danilowicz K, Albiger N, Vanegas M, Gomez R M, Cross G, Bruno O D. Androgen-secreting adrenal adenomas.  Obstet Gynecol. 2002;  100 1099-1102
  • 32 Leinonen P, Ranta T, Siegberg R, Pelkonen R, Heikkila P, Kahri A. Testosterone-secreting virilizing adrenal adenoma with human chorionic gonadotrophin receptors and 21-hydroxylase deficiency.  Clin Endocrinol (Oxf). 1991;  34 31-35
  • 33 de Lange W E, Pratt J J, Doorenbos H. A gonadotrophin responsive testosterone producing adrenocortical adenoma and high gonadotrophin levels in an elderly woman.  Clin Endocrinol (Oxf). 1980;  12 21-28
  • 34 Takahashi H, Yoshizaki K, Kato H, Masuda T, Matsuka G, Mimura T, Inui Y, Takeuchi S, Adachi H, Matsumoto K. A gonadotrophin-responsive virilizing adrenal tumour identified as a mixed ganglioneuroma and adreno-cortical adenoma.  Acta Endocrinol (Copenh). 1978;  89 701-709
  • 35 Bugalho M J, Li X, Rao C V, Soares J, Sobrinho L G. Presence of a Gs alpha mutation in an adrenal tumor expressing LH/hCG receptors and clinically associated with Cushing's syndrome.  Gynecol Endocrinol. 2000;  14 50-54
  • 36 Pabon J, Li X, Lei Z, Sanfilippo J, Yussman M, Rao C. Novel presence of luteinizing hormone/chorionic gonadotropin receptors in human adrenal glands.  J Clin Endocrinol Metab. 1996;  81 2397-2400
  • 37 Seron-Ferre M, Lawrence C C, Jaffe R B. Role of hCG in regulation of the fetal zone of the human fetal adrenal gland.  J Clin Endocrinol Metab. 1978;  46 834-837
  • 38 Lacroix A, N' Diaye N, Mircescu H, Hamet P, Tremblay J. Abnormal expression and function of hormone receptors in adrenal Cushing's syndrome.  Endocr Res. 1998;  24 835-843
  • 39 Matzuk M M, Finegold M J, Mather J P, Krummen L, Lu H, Bradley A. Development of cancer cachexia-like syndrome and adrenal tumors in inhibin-deficient mice.  Proc Natl Acad Sci U S A. 1994;  91 8817-8821
  • 40 Beuschlein F, Looyenga B D, Bleasdale S E, Mutch C, Bavers D L, Parlow A F, Nilson J H, Hammer G D. Activin Induces x-Zone Apoptosis That Inhibits Luteinizing Hormone-Dependent Adrenocortical Tumor Formation in Inhibin-Deficient Mice.  Mol Cell Biol. 2003;  23 3951-3964
  • 41 Massague J. TGF-beta signal transduction.  Annu Rev Biochem. 1998;  67 753-791
  • 42 Muro-Cacho C A, Rosario-Ortiz K, Livingston S, Munoz-Antonia T. Defective transforming growth factor beta signaling pathway in head and neck squamous cell carcinoma as evidenced by the lack of expression of activated Smad2.  Clin Cancer Res. 2001;  7 1618-1626
  • 43 Eppert K, Scherer S W, Ozcelik H, Pirone R, Hoodless P, Kim H, Tsui L C, Bapat B, Gallinger S, Andrulis I L, Thomsen G H, Wrana J L, Attisano L. MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma.  Cell. 1996;  86 543-552
  • 44 Uchida K, Nagatake M, Osada H, Yatabe Y, Kondo M, Mitsudomi T, Masuda A, Takahashi T. Somatic in vivo alterations of the JV18-1 gene at 18q21 in human lung cancers.  Cancer Res. 1996;  56 5583-5585
  • 45 Lassus H, Salovaara R, Aaltonen L A, Butzow R. Allelic analysis of serous ovarian carcinoma reveals two putative tumor suppressor loci at 18q22-q23 distal to SMAD4, SMAD2, and DCC.  Am J Pathol. 2001;  159 35-42
  • 46 Risma K A, Clay C M, Nett T M, Wagner T, Yun J, Nilson J H. Targeted overexpression of luteinizing hormone in transgenic mice leads to infertility, polycystic ovaries, and ovarian tumors.  Proc Natl Acad Sci U S A. 1995;  92 1322-1326

F. Beuschlein, M. D.

Division of Endocrinology and Metabolism · Department of Internal Medicine II · Klinikum der Albert-Ludwigs-Universität Freiburg

Hugstetter Str. 55 · 79106 Freiburg ·

Telefon: + 49 (761) 270-7327

Fax: + 49 (761) 270-3372

eMail: beuschlein@medizin.ukl.uni-freiburg.de