Zusammenfassung
Ziel: Simulation, Beschreibung und Entwicklung dynamischer Druckverhältnisse auf die Aorten- bzw. Stentgraftwand im zeitlichen Verlauf vor und nach stentgestützter Ausschaltung infrarenaler Bauchaortenaneurysmata. Patienten und Methode: Zwischen März 1996 und Mai 2001 wurden 13 Patienten mit einem infrarenalen Bauchaortenaneurysma einer transfemoralen Stent-Graft-Implantation unterzogen. Basierend auf Multi Detector Row (MDR) -CT Datensätzen dieser 13 Patienten wurde mithilfe einer „Computational Fluid Dynamics” (CFD) Software eine Blutflusssimulation der abdominellen Aorta vor und nach Stentimplantation durchgeführt. Von jedem Patienten wurden Simulationen von einer prä- und drei postoperativen Follow-up CT-Serien erstellt. Ergebnisse: Die Stentimplantation führte bei 10/13 Patienten zu einer Senkung des dynamischen Spitzendrucks um durchschnittlich 1057 Pa von der prä- zur postoperativen Untersuchung. Im weiteren Verlauf sank auch der Median des dynamischen Druckes bei 8/13 Patienten. Regionen mit erhöhten Druckwerten (sog. vulnerable Regionen), wie beispielsweise die des angedockten Stentschenkels, glichen sich im Verlauf der Zeit den Umgebungsdrücken an. Schlussfolgerung: Die Blutflusssimulation ermöglicht die Beurteilung der Druckverhältnisse in infrarenalen Bauchaortenaneurysmen vor und nach Stent-Graft-Implantation und erlaubt in der Verlaufskontrolle eine Aussage zur Homogenisierung der Druckverhältnisse innerhalb des Stentgrafts.
Abstract
Purpose: Simulation, description and analysis of dynamic pressure in infrarenal abdominal aortic aneurysms (AAA) before and after endovascular repair. Materials and Methods: During March 1996 and May 2001, 13 patients with AAA underwent endovascular treatment. The MDR-CT scans of these patients were used for the non-invasive analysis of the hemodynamics in the aorta with CFD software before and after endovascular repair. One pre-interventional and three post-interventional CT scans were analyzed for each patient. Results: Compared to the pre-interventional simulation, endovascular treatment led to an average dynamic pressure decrease of 1057 Pa in 10 of 13 patients. During the subsequent course, the median of the dynamic pressure decreased in 8 of 13 patients. Vulnerable regions initially identified as high-pressure regions, like the docking area or the second stent limb, adapted to the pressure in the surrounding tissue in the course of time. Conclusion: CFD-based blood flow simulation offers the opportunity to analyze dynamic pressure in AAA before and after endovascular repair and allows a prognostic statement as to the possible homogenization of the pressure in abdominal stent-grafts.
Key words
Blood flow simulation - CFD - abdominal aortic aneurysm
Literatur
1
Wilmink A B, Quick C R.
Epidemiology and potential for prevention of abdominal aortic aneurysm.
Br J Surg.
1998;
85
155-162
2
Moher D, Cole C W, Hill G B.
Epidemiology of abdominal aortic aneurysm: the effect of differing definitions.
Eur J Vasc Surg.
1992;
6
647-650
3
Katz D J, Stanley J C, Zelenock G B.
Abdominal aortic aneurysms.
Semin Vasc Surg.
1995;
8
289-298
4
Parodi J C, Barone A, Piraino R, Schonholz C.
Endovascular treatment of abdominal aortic aneurysms: lessons learned.
J Endovasc Surg.
1997;
4
102-110
5
Parodi J C, Ferreira L M.
Ten-year experience with endovascular therapy in aortic aneurysms.
J Am Coll Surg.
2002;
194
S58-66
6
Parodi J C, Marin M L, Veith F J.
Transfemoral, endovascular stented graft repair of an abdominal aortic aneurysm.
Arch Surg.
1995;
130
549-552
7
Parodi J C, Palmaz J C, Barone H D.
Transfemoral intraluminal graft implantation for abdominal aortic aneurysms.
Ann Vasc Surg.
1991;
5
491-499
8
Liffman K, Lawrence-Brown M M, Semmens J B, Bui A, Rudman M, Hartley D E.
Analytical modeling and numerical simulation of forces in an endoluminal graft.
J Endovasc Ther.
2001;
8
358-371
9
Raghavan M L, Vorp D A, Federle M P, Makaroun M S, Webster M W.
Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm.
J Vasc Surg.
2000;
31
760-769
10
Yu S C, Chan W K, Ng B T, Chua L P.
A numerical investigation on the steady and pulsatile flow characteristics in axi-symmetric abdominal aortic aneurysm models with some experimental evaluation.
J Med Eng Technol.
1999;
23
228-239
11
Wilson K A, Lindholt J S, Hoskins P R, Heickendorff L, Vammen S, Bradbury A W.
The relationship between abdominal aortic aneurysm distensibility and serum markers of elastin and collagen metabolism.
Eur J Vasc Endovasc Surg.
2001;
21
175-178
12
Wilson K A, Lee A J, Hoskins P R, Fowkes F G, Ruckley C V, Bradbury A W.
The relationship between aortic wall distensibility and rupture of infrarenal abdominal aortic aneurysm.
J Vasc Surg.
2003;
37
112-117
13
Baum R ACJ, Cope C, Golden M A, Velazquez O C, Neschis D G, Mitchell M E, Barker C F, Fairman R M.
Aneurysm sac pressure measurements after endovascular repair of abdominal aortic aneurysms.
J Vasc Surg.
2001;
33
32-41
14
Mehta M V F, Ohki T, Lipsitz E C, Cayne N S, Darling RC R C.
Significance of endotension, endoleak, and aneurysm pulsatility after endovascular repair.
J Vasc Surg.
2003;
37
842-846
15
Walker S P V, Fishwick G, Bell P R.
Periprosthetic leak and rupture after endovascular repair of abdominal aortic aneurysm: the significance of device design for long-term results.
J Vasc Surg.
1999;
29
1152-1158
16
Kramer S C, Seifarth H, Pamler R, Fleiter T, Gorich J.
Geometric changes in aortic endografts over a 2-year observation period.
J Endovasc Ther.
2001;
8
34-38
17
Pitton M B, Hillebrand J, Schmenger P. et al .
[Endovascular aneurysm treatment: Radiological and macropathological findings of the endoluminal surface of modular stent grafts].
Fortschr Rontgenstr.
2002;
174
579-587
Dr. Markus Juchems
Abteilung für Diagnostische Radiologie, Universitätsklinikum Ulm
Steinhövelstraße 9
89075 Ulm
Phone: ++49/731/500-27400
Fax: ++49/731/500-27409
Email: markus.juchems@medizin.uni-ulm.de