References
1a
Brunel JM.
Faure B.
Maffei M.
Coord. Chem. Rev.
1998,
178-180:
665
1b
Ohff H.
Holz J.
Quirmbach M.
Börner A.
Synthesis
1998,
1391
1c
Carboni B.
Monnier L.
Tetrahedron
1999,
55:
1197
2
Corrbridge DEC. In Phosphorus, an Outline of Its Chemistry, Biochemistry and Uses
Elsevier;
Amsterdam:
1991.
3
Uziel J.
Stephan M.
Kaloun EB.
Genêt JP.
Jugé S.
Bull. Soc. Chim. Fr.
1997,
134:
379
For alkoxy analogues (R′O)(R′′O)P(O)·BH3
- see:
4a
Jeno T.
Ramsay-Shaw B.
Porter K.
Spielvogel BF.
Sood A.
Angew. Chem., Int. Ed. Engl.
1992,
31:
1373
4b
He K.
Hasan A.
Krzyzanowska B.
Ramsay-Shaw B.
J. Org. Chem.
1998,
63:
5769
4c
Sergueev DS.
Ramsay-Shaw B.
J. Am. Chem. Soc.
1998,
120:
9417
4d
Sergueeva ZA.
Sergueev DS.
Ramsay-Shaw B.
Tetrahedron Lett.
1999,
40:
2041
4e
Sergueeva ZA.
Sergueev DS.
Ramsay-Shaw B.
Tetrahedron Lett.
1999,
40:
2041
4f
Li P.
Ramsay-Shaw B.
Chem. Commun.
2002,
2890
4g
Li P.
Ramsay-Shaw B.
Org. Lett.
2002,
4:
2009
5
Nagata K.
Matsukawa S.
Imamoto T.
J. Org. Chem.
2000,
65:
4185
6
Köster R.
Tsay Y.-H.
Synoradzki L.
Chem. Ber.
1987,
120:
1117
7
Stankevič M.
Pietrusiewicz KM.
Synlett
2003,
1012
8
Typical Procedure for Preparation of Phosphinous Acid-Boranes by Reaction of Secondary Phosphine Oxide Anions and BH
3
·THF complex:
In a reaction flask equipped with magnetic stirrer and dry argon inlet was placed secondary phosphine oxide (0.5 mmol) in 15 mL of dry THF. Next, an equimolar amount of a base (NaH or butyllithium) (0.5 mmol) was added under argon atmosphere. After 15 min at r.t. 1 M BH3·THF complex (0.75 mmol) in THF was added. The reaction mixture was then stirred at r.t. for two h. Aq HCl (1 mL) was added and the reaction mixture was extracted several times with CH2Cl2, organic layers were collected, dried over anhyd MgSO4, and evaporated. The crude product was purified by flash chromatography using hexane:EtOAc (2:1) as eluent.
t-Butylphenylphosphinous Acid-Borane (2a). Yield 98% (74%). 1H NMR (CDCl3): δ = 0.00-1.70 (br m, 3 H), 1.14 (d, J
P-C = 14.66 Hz, 9 H), 4.52 (br s, 1 H), 7.41-7.89 (m, 3 H), 7.69-7.85 (m, 2 H) ppm. 13C NMR (CDCl3): δ = 23.85, 23.92, 31.31, 32.13, 127.82, 128.03, 131.20, 131.26, 131.46 ppm. 31P NMR (CDCl3): δ = 114.39 ppm (m). Anal. Calcd for C10H18BOP: C, 61.27; H, 9.26. Found: C, 61.26; H, 9.08.
Benzylphenylphosphinous Acid-Borane (2b). Yield 63%. 1H NMR (CDCl3): δ = 0.07-1.65 (br m, 3 H), 3.38 (d,
J
P-H = 10.22 Hz, 2 H), 4.90 (br s, 1 H), 7.01-7.13 (m, 2 H), 7.21-7.34 (m, 3 H), 7.40-7.75 (m, 5 H) ppm. 13C NMR (CDCl3): δ = 39.41, 40.14, 126.68, 126.74, 127.98, 128.03, 128.08, 128.28, 129.95, 130.04, 130.19, 130.41, 131.06, 131.13, 131.18, 131.51, 131.56, 132.32 ppm. 31P NMR (CDCl3): δ = 101.64 ppm (m). Anal. Calcd for C13H16BOP: C, 67.87; H, 7.01. Found: C, 67.96; H, 7.18.
(2-Naphthylmethyl)phenylphosphinous Acid-Borane (2c). Yield 63% (67%). 1H NMR (CDCl3): δ = 0.05-1.72 (br m, 3 H), 3.52 (d, J
P-H = 9.98 Hz, 2 H), 3.60 (br s, 1 H), 7.11-7.21 (m, 1 H), 7.36-7.56 (m, 5 H), 7.56-7.89 (m, 6 H) ppm. 13C NMR (CDCl3): δ = 39.64, 40.36, 125.71, 126.02, 127.39, 127.51, 127.68, 128.12, 128.25, 128.46, 128.64, 128.77, 128.89, 130.26, 130.48, 131.73, 131.77, 132.22 ppm. 31P NMR (CDCl3): δ = 103.16 ppm (m). Anal. Calcd for C17H18BOP: C, 72.99; H, 6.48. Found: C, 73.04, H, 6.53.
o-Anisylphenylphosphinous Acid-Borane (2d). Yield 43%. 1H NMR (CDCl3): δ = 0.20-1.96 (br m, 3 H), 3.81 (s, 3 H), 5.11 (br s, 1 H), 6.91-7.04 (m, 1 H), 7.10-7.22 (m, 1 H), 7.38-7.76 (m, 6 H), 7.83-8.00 (m, 1 H) ppm. 13C NMR (CDCl3): δ = 55.98, 111.37, 121.49, 121.75, 128.13, 128.34, 130.04, 130.27, 131.10, 131.15, 134.11, 134.33 ppm. 31P NMR (CDCl3): δ = 98.00 ppm (m). Anal. Calcd for C13H16BO2P: C, 63.46; H, 6.55. Found: C, 63.44; H, 6.57.
9
Reetz T.
J. Am. Chem. Soc.
1960,
82:
5039
10
General Procedure for the Synthesis of Phosphinous Acid-Boranes by the Reaction of Secondary Phosphine Oxides with NaBH
4
/BF
3
:
To the solution of secondary phosphine oxide (0.5 mmol) in 15 mL of dry THF ethereal solution of BF3 (2 mmol) was added under argon atmosphere. Promptly after, NaBH4 (1.5 mmol) was added to the reaction mixture. Then, the reaction flask was fitted with a reflux condenser and the reaction mixture was heated to reflux for 3 h. The reaction mixture was then allowed to cool to r.t. and aq HCl (1 mL) was added to quench the reaction. The reaction mixture was extracted several times with CH2Cl2, organic layers were collected, dried over anhyd MgSO4, and evaporated. The crude product was purified by flash chromatography using hexane/EtOAc (2:1) as eluent.
[(2-Methyl)-1-naphthyl]phenylphosphinous Acid-Borane (2f). Yield 86%. 1H NMR (CDCl3): δ = 0.30-1.96 (br m, 3 H), 2,77 (s, 3 H), 5.65 (br s, 1 H), 7.32-7.54 (m, 6 H), 7.54-7.72 (m, 2 H), 7.78-7.98 (m, 2 H), 8.40-8.58 (m, 1 H) ppm. 13C NMR (CDCl3): δ = 24.14, 24.27, 112.20, 125.27, 126.54, 126.89, 127.03, 128.44, 128.57, 128.66, 129.94, 130.03, 130.17, 130.24, 131.16, 131.20, 132.88, 132.93 ppm. 31P NMR (CDCl3): δ = 99.14 ppm (m). Anal. Calcd for C17H18BOP: C, 72.99; H, 6.48. Found: C, 73.11; H, 6.59.
Phenyl-o-tolylphosphinous Acid-Borane (2g). Yield 82%. 1H NMR (CDCl3): δ = 0.30-2.00 (br m, 3 H), 2.28 (s, 3 H), 4.45 (br s, 1 H), 7.18-7.60 (m, 6 H), 7.60-7.78 (m, 2 H), 7.92-8.10 (m, 1 H) ppm. 13C NMR (CDCl3): δ = 21.28, 21.38, 125.58, 125.81, 128.43, 128.64, 130.68, 130.92, 131.35, 131.52, 131.61, 132.04, 132.64, 132.93 ppm. 31P NMR (CDCl3): δ = 98.57 ppm (m). Anal. Calcd for C13H16BOP: C, 67.87; H, 7.01. Found: C, 67.94; H, 7.16.
Di-c-hexylphosphinous Acid-Borane (2h). Yield 91%. 1H NMR (CDCl3): δ = -0.45-1.35 (br m, 3 H), 1.15-1.62 (m, 10 H), 1.66-1.97 (m, 12 H), 4.13 (br s, 1 H) ppm. 13C NMR (CDCl3): δ = 24.79, 24.84, 25.70, 25.94, 26.35, 26.54, 26.61, 34.20, 34.95 ppm. 31P NMR (CDCl3): δ = 119.36 ppm (m). Anal. Calcd for C12H26BOP: C, 63.18; H, 11.49. Found: C, 63.04; H, 11.40.
i-Propylphenylphosphinous Acid-Borane (2i). Yield 82%. 1H NMR (CDCl3): δ = -0.09-1.5 (br m, 3 H), 1.02-1.23 (m, 6 H), 2.02-2.24 (m, 1 H), 4.65 (br s, 1 H), 7.43-7.61 (m, 3 H), 7.71-7.87 (m, 2 H) ppm. 13C NMR (CDCl3): δ = 15.31, 15.49, 28.91, 29.77, 128.13, 128.33, 128.66, 128.86, 130.56, 130.77, 131.31, 131.36 ppm. 31P NMR (CDCl3): δ = 110.09 ppm (m). Anal. Calcd for C9H16BOP: C, 59.39; H, 8.86. Found: C, 59.28; H, 8.85.
c-Hexylphenylphosphinous Acid-Borane (2j). Yield 90%. 1H NMR (CDCl3): δ = -0.09-1.5 (br m, 3 H), 1.11-1.64 (m, 6 H), 1.64-2.02 (m, 5 H), 4.25 (br s, 1 H), 7.42-7.61 (m, 3 H), 7.70-7.85 (m, 2 H) ppm. 13C NMR (CDCl3): δ = 25.05, 25.16, 25.79, 26.10, 26.36, 38.80, 39.65, 128.11, 128.31, 130.55, 130.76, 131.20, 131.24 ppm. 31P NMR (CDCl3): δ = 107.13 ppm (m). Anal. Calcd for C12H20BOP: C, 64.90; H, 9.08. Found: C, 64.83; H, 9.18.
Di-n-hexylphosphinous Acid-Borane (2k). Yield 90%. 1H NMR (CDCl3): δ = -0.30-1.40 (br m, 3 H), 0.84-1.04 (m, 6 H), 1.24-1.52 (m, 12 H), 1.52-1.92 (m, 8 H), 4.08 (br s, 1 H) ppm. 13C NMR (CDCl3): δ = 14.06, 21.79, 22.48, 28.68, 29.47, 30.54, 30.797, 31.35, 31P NMR (CDCl3): δ = 116.06 ppm (m). Anal. Calcd for C12H30BOP: C, 62.08; H, 13.03. Found: C, 61.99; H, 12.97.
Phenyl-p-tolylphosphinous Acid-Borane (2l). Yield 65%. 1H NMR (CDCl3): δ = 0.20-1.95 (br m, 3 H), 2.41 (s, 3H), 5.08 (br s, 1 H), 7.21-7.32 (m, 2 H), 7.36-7.56(m, 3 H), 7.56-7.81 (m, 4 H) ppm. 13C NMR (CDCl3): δ = 21.54, 128.30, 128.52, 129.12, 129.34, 130.67, 130.83, 130.90, 131.07, 131.34 ppm. 31P NMR (CDCl3): δ = 93.65 ppm (m). Anal. Calcd for C13H16BOP: C, 67.87; H, 7.01. Found: C, 67.66; H, 7.17.
11a
Drabowicz J.
Łyżwa P.
Omelańczuk J.
Pietrusiewicz KM.
Mikoajczyk M.
Tetrahedron: Asymmetry
1999,
10:
2757
11b
Haynes RK.
Au-Yeung T.-L.
Chan W.-K.
Lam W.-L.
Li Z.-Y.
Yeung L.-L.
Chan ASC.
Li P.
Koen M.
Mitchell CR.
Vonwiller SC.
Eur. J. Org. Chem.
2000,
3205
12a
Imamoto T.
Oshiki T.
Onozawa T.
Kusumoto T.
Sato K.
J. Am. Chem. Soc.
1990,
112:
5244
12b
Wolfe B.
Livinghouse T.
J. Am. Chem. Soc.
1998,
120:
5116
13
Oshiki T.
Hikosaka T.
Imamoto T.
Tetrahedron Lett.
1991,
32:
3371
14a
Motekajtis RJ.
Martell AE.
Can. J. Chem.
1982,
60:
168
14b
Izquiedro A.
Beltram JL.
Anal. Chim. Acta
1986,
181:
87
14c
Radomski R.
Radomska R.
Dankowski M.
Szajowska K.
Wisialski Z.
Comput. Chem.
1995,
19:
303
15 Stankeviè, M.; Pietrusiewicz, K. M. to be published.
16a
Kabachnik MI.
Z. Chem.
1961,
1:
289
16b
Kozachenko AG.
Uryupin AB.
Spivak LL.
Grigor’eva AA.
Matrosov EI.
Kabachnik MI.
Mastryukova TA.
Izv. Akad. Nauk SSSR, Ser. Khim.
1976,
25:
1646