References
1
Ernst B.
Hart GW.
Sinaӱ P.
Carbohydrates in Chemistry and Biology
Wiley-VCH;
Weinheim:
2000.
For a discussion on the problems related to α-fucosylations and pertinent references see:
2a
Plante OJ.
Palmacci ER.
Andrade RB.
Seeberger PH.
J. Am. Chem. Soc.
2001,
123:
9545
2b
Love KR.
Andrade RB.
Seeberger PH.
J. Org. Chem.
2001,
66:
8165
For other recent examples see:
3a
Manzoni L.
Lay L.
Schmidt RR.
J. Carbohydr. Chem.
1998,
17:
739
3b
Xia J.
Alderfer JL.
Piskorz CF.
Matta KL.
Chem.-Eur. J.
2000,
6:
3442
3c
Söderman P.
Larsson EA.
Wilman G.
Eur. J. Org. Chem.
2002,
1614
3d
Ando T.
Ishida H.
Kiso M.
Carbohydr. Res.
2003,
338:
503
3e
Xia J.
Alderfer JL.
Locke RD.
Piskorz CF.
Matta KL.
J. Org. Chem.
2003,
68:
2752
4a
Schmid U.
Waldmann H.
Chem.-Eur. J.
1998,
4:
494
4b
Böhm G.
Waldmann H.
Tetrahedron Lett.
1995,
36:
3843
5
Schmidt RR.
Toepfer A.
Tetrahedron Lett.
1991,
32:
3353
6
Flowers HM.
Carbohydr. Res.
1983,
119:
75
7a
Lemieux RU.
Hendriks KB.
Stick RV.
James K.
J. Am. Chem. Soc.
1975,
97:
4056
7b
Sato S.
Mori M.
Ito Y.
Ogawa T.
Carbohydr. Res.
1986,
155:
C6
8a
Adinolfi M.
Barone G.
Iadonisi A.
Mangoni L.
Schiattarella M.
Tetrahedron Lett.
2001,
42:
5967
8b
Adinolfi M.
Barone G.
Iadonisi A.
Schiattarella M.
Tetrahedron Lett.
2002,
43:
5573
8c
Adinolfi M.
Iadonisi A.
Schiattarella M.
Tetrahedron Lett.
2003,
44:
6479
9
Schmidt RR.
Kinzy W.
Adv. Carbohydr. Chem. Biochem.
1994,
50:
21
10
Yu B.
Tao H.
Tetrahedron Lett.
2001,
42:
2405
11 For a recent review on the synthesis of 1,2-cis-glycosides: Demchenko A.
Synlett
2003,
1225
12
Adinolfi M.
Barone G.
Iadonisi A.
Schiattarella M.
Org. Lett.
2003,
5:
987
For some examples of syntheses of Lewis X derivatives see ref.3a,3e. For further examples see:
13a
Jacquinet J.-C.
Sinaӱ P.
J. Chem. Soc., Perkin Trans. 1
1979,
314
13b
Hindsgaul O.
Norberg T.
Pendu JL.
Lemieux RU.
Carbohydr. Res.
1982,
109:
109
13c
Lonn H.
Carbohydr. Res.
1985,
139:
115
13d
Nillsson M.
Norberg T.
Carbohydr. Res.
1988,
183:
71
13e
Sato S.
Ito Y.
Ogawa T.
Tetrahedron Lett.
1988,
29:
5267
13f
Classon B.
Garegg PJ.
Helland A.-C.
J. Carbohydr. Chem.
1989,
8:
543
13g
Nillsson M.
Norberg T.
J. Carbohydr. Chem.
1989,
8:
613
13h
Nicolaou KC.
Hummel CW.
Bockovich NJ.
Wong CH.
J. Chem. Soc., Chem. Commun.
1991,
870
13i
Toepfer A.
Schmidt RR.
Tetrahedron Lett.
1992,
33:
5161
13j
Nicolaou KC.
Bockovich NJ.
Carcanague DR.
J. Am. Chem. Soc.
1993,
115:
8843
13k
Numomura S.
Iida M.
Numata M.
Sugimoto M.
Ogawa T.
Carbohydr. Res.
1994,
263:
C1
13l
vom de Brook K.
Kunz H.
Angew. Chem., Int. Ed. Engl.
1994,
33:
101
13m
Jain RK.
Vig R.
Locke RD.
Mohammad A.
Matta KL.
Chem. Commun.
1996,
65
13n
Yan L.
Kahne D.
J. Am. Chem. Soc.
1996,
118:
9239
13o
Hummel G.
Schmidt RR.
Tetrahedron Lett.
1997,
38:
1173
13p
Figueroa-Perez S.
Verez-Bencomo V.
Tetrahedron Lett.
1998,
39:
9143
13q
Ellervik U.
Magnusson G.
J. Org. Chem.
1998,
63:
9314
13r
Gege C.
Vogel J.
Bendas G.
Rothe U.
Schmidt RR.
Chem.-Eur. J.
2000,
6:
111
13s
Gege C.
Oscarson S.
Schmidt RR.
Tetrahedron Lett.
2001,
42:
377
13t
Majumdar D.
Zhu T.
Boons G.-J.
Org. Lett.
2003,
5:
3591
14
Tanaka H.
Amaya T.
Takahashi T.
Tetrahedron Lett.
2003,
44:
3053
15
Procedure A: A mixture of acceptor (0.2 mmol) and donor 1 (see Table 1 for relative amounts) were coevaporated three times in anhyd toluene and the residue was kept under vacuum for 1 h. Acid washed molecular sieves (4 Å AW 300 MS, pellets, 200 mg) were then added and the mixture was dissolved at 0 °C with CH2Cl2 (2.8 mL), and Et2O (700 µL). After cooling at -30 °C, a solution of Yb(OTf)3 (12.5 mg, 0.02 mmol) in dioxane (700 µL) was added drop-wise. The mixture was kept under stirring at this temperature until complete consumption of the fucosyl donor (1-3 h, TLC) and then few drops of Et3N were added. The mixture was filtered on a short pad of silica gel, concentrated, and the residue purified by silica gel chromatography (eluent: hexane/EtOAc mixtures).
16
Procedure B: A mixture of acceptor (0.2 mmol) and donor 2 (see Table
[1]
for relative amounts) were coevaporated three times in anhyd toluene and the residue was kept under vacuum for 1 h. Acid washed molecular sieves (4 Å AW 300 MS, pellets, 1.5-2 g) were then added and the solvent (dichloroethane or toluene, 2-4 mL) was added at 0 °C. The mixture was kept at 0 °C under stirring for 30 min and then temperature was left to rise spontaneously. After complete consumption of the donor (24-36 h), the mixture was filtered through a cotton pad and concentrated. The residue was purified by silica gel chromatography (eluent: hexane/EtOAc mixtures).
17 All compounds were identified by 1H NMR and 13C NMR analyses. Spectroscopic selected data of representative compounds are reported. Compound 15: 1H NMR (300 MHz, CDCl3): δ = 7.50-7.20 (aromatic protons), 5.10 (1 H, d, J
1,2 = 3.9 Hz, H-1 Fuc), 5.07 (1 H, d, J
1,2 = 8.2 Hz, H-1 GlcN), 5.03 (1 H, dd, J
1,2 = 7.4 Hz, J
2,3 = 10.2 Hz, H-2 Gal), 4.62 (1 H, d, H-1 Gal), 4.90-4.34 (17 H, Troc CH2, 7 × benzyl CH2 and H-5 Fuc), 4.18 (1 H, t, J
2,3 = J
3,4 = 9.6 Hz, H-3 GlcN), 4.04-3.26 (12 H, H-3 Gal, H-4 Gal, H-5 Gal, H2-6 Gal, H-4 GlcN, H-5 GlcN, H2-6 GlcN, H-2 Fuc, H-3 Fuc, and H-4 Fuc), 3.81 (3 H, s, -OCH3), 3.03 (1 H, m, H-2 GlcN), 1.13 (3 H, d, J
5,6 = 6.2 Hz, H3-6 Fuc), 0.86 [9 H, s, -SiC(CH3)3], 0.08 and 0.03 [6 H, 2 × s, -Si(CH3)2]. 13C NMR (50 MHz, CDCl3): δ = 155.0 and 153.4 (-NH-CO-OCH2CCl3, -O-CO-OMe), 139.3, 139.2, 138.8, 138.6, 138.4, 137.9, and 137.8 (aromatic C), 128.8-127.0 (aromatic CH), 99.5, 97.3, and 94.4 (C-1 Gal, GlcN, Fuc), 95.1 (-NH-CO-OCH2CCl3), 55.0 (-OCH3), 25.6 [-SiC(CH3)3], 17.9 [-SiC(CH3)3], 16.2 (C-6 Fuc), -4.2 and -5.3 [-Si(CH3)2]; other signals at δ = 80.9, 79.6, 78.8, 76.6, 76.0, 75.4, 75.0, 74.7, 73.8, 73.4, 73.2, 72.8, 72.4, 72.3, 68.2, 67.6, 66.4, 61.8. Compound 16: 1H NMR (400 MHz, CDCl3): δ = 7.40-7.15 (aromatic protons), 5.27 (1 H, dd, J
2,3 = 10.4 Hz, J
3,4 = 3.2 Hz, H-3 Fuc), 5.21 (1 H, bd, H-4 Fuc), 5.15 (1 H, d, J
1,2 = 3.6 Hz, H-1 Fuc), 5.11 (1 H, d, J
1,2 = 7.8 Hz, H-1 GlcN), 5.00-4.96 (2 H, m, H-2 Gal and H-5 Fuc), 4.59 (1 H, d, J
1,2 = 8.0 Hz, H-1 Gal), 4.72-4.40 (12 H, Troc CH2, 5 × benzyl CH2), 4.20 (1 H, t, J
2,3 = J
3,4 = 9.4 Hz, H-3 GlcN), 3.98-3.28 (10 H, H-3 Gal, H-4 Gal, H-5 Gal, H2-6 Gal, H-4 GlcN, H-5 GlcN, H2-6 GlcN, and H-2 Fuc), 3.78 (3 H, s, -OCH3), 2.91 (1 H, m, H-2 GlcN), 2.09 and 1.98 (6 H, 2 × s, 2 × acetyl CH3), 0.93 (3 H, d, J
5,6 = 6.2 Hz, H3-6 Fuc), 0.84 [9 H, s, -SiC(CH3)3], 0.06 and 0.01 [6 H, 2 × s, -Si(CH3)2]. 13C NMR (50 MHz, CDCl3): δ = 170.4 and 169.4 (2 × -COCH3), 155.1 and 154.0 (-NH-CO-CH2CCl3, -O-CO-OMe), 138.6, 138.3, 138.3, 138.1, and 138.1 (aromatic C), 129.0-127.2 (aromatic CH), 99.4, 97.5, 93.9 (C-1 Gal, GlcN, and Fuc), 55.0 (-OCH3), 25.6 [-SiC(CH3)3], 20.9 and 20.7 (2 × -COCH3), 17.9 [-SiC(CH3)3], 15.2 (C-6 Fuc), -4.2 and -5.3 [-Si(CH3)2]; other signals at δ = 80.5, 74.8, 74.6, 74.4, 73.6, 73.2, 73.1, 72.3, 72.0, 71.8, 70.3, 67.9, 67.8, 64.5, 61.8.