Subscribe to RSS
DOI: 10.1055/s-2004-815676
Cine Phase-Contrast Magnetic Resonance Imaging As a Tool for Quantification of Skeletal Muscle Motion
Publication History
Publication Date:
21 January 2004 (online)
ABSTRACT
In recent years, biomechanics researchers have increasingly used dynamic magnetic resonance imaging techniques, such as cine phase contrast (cine PC), to study muscle and bone motion in vivo. Magnetic resonance imaging provides a non-invasive tool to visualize the anatomy and measure musculoskeletal tissue velocities during joint motion. Current application of cine PC magnetic resonance imaging in biomechanics includes study of knee joint kinematics, tendon strain, and skeletal muscle displacement and shortening. This paper article reviews the use of cine PC magnetic resonance imaging for quantification of skeletal muscle motion. The imaging studies presented examine the relative motion of the knee flexor and extensor muscles after orthopedic surgery and examine the uniformity of shortening within the biceps brachii muscle. The current challenges and limitations of using cine PC magnetic resonance imaging in biomechanics research are addressed as well as opportunities for future studies of skeletal muscle motion using dynamic magnetic resonance imaging.
KEYWORDS
Skeletal muscle - biomechanics - cine phase-contrast magnetic resonance imaging
REFERENCES
- 1 Asakawa D S, Blemker S S, Gold G E, Delp S L. In vivo motion of the rectus femoris muscle after tendon transfer surgery. J Biomech . 2002; 35(8) 1029-1037
- 2 Drace J E, Pelc N J. Tracking the motion of skeletal muscle with velocity-encoded MR imaging. J Magn Reson Imaging . 1994; 4 773-778
- 3 Pappas G, Asakawa D S, Delp S L, Zajac F E, Drace J E. Nonuniform shortening in the biceps brachii during elbow flexion. J Appl Physiol . 2002; 92 2381-2389
- 4 Sheehan F T, Zajac F E, Drace J E. Using cine phase contrast magnetic resonance imaging to non-invasively study in vivo knee dynamics. J Biomech . 1998; 31 21-26
- 5 Shellock F G, Mink J H, Deutsch A, Pressman B D. Kinematic magnetic resonance imaging of the joints: techniques and clinical applications. Magn Reson Q . 1991; 7(2) 104-135
- 6 Shellock F G, Feske W, Frey C, Terk M. Peroneal tendons: use of kinematic MR imaging of the ankle to determine subluxation. J Magn Reson Imaging . 1997; 7(2) 451-454
- 7 Ward S R, Shellock F G, Terk M R, Salsich G B, Powers C M. Assessment of patellofemoral relationships using kinematic MRI: comparison between qualitative and quantitative methods. J Magn Reson Imaging . 2002; 16(1) 69-74
- 8 Brossmann J, Muhle C, Schroder C. et al . Patellar tracking patterns during active and passive knee extension: evaluation with motion-triggered cine MR imaging. Radiology . 1993; 187(1) 205-212
- 9 Brossmann J, Muhle C, Bull C C. et al . Cine MR imaging before and after realignment surgery for patellar maltracking-comparison with axial radiographs. Skeletal Radiol . 1995; 24(3) 191-196
- 10 Drace J E, Pelc N J. Measurement of skeletal muscle motion in vivo with phase-contrast MR imaging. J Magn Reson Imaging . 1994; 4 157-163
- 11 Quick H H, Ladd M E, Hoevel M. et al . Real-time MRI of joint movement with trueFISP. J Magn Reson Imaging . 2002; 15(6) 710-715
- 12 Pelc N J, Herfkens R J, Shimakawa A, Enzmann D R. Phase contrast cine magnetic resonance imaging. Magn Reson Q . 1991; 7(4) 229-254
-
13 Finni T, Hodgson J, Lai A, Edgerton V R, Sinha S. Measurement of tendon length change during cyclic voluntary contraction using a phase-contrast MRI. Presented at the Banff Symposium on Skeletal Muscle; August 2-3, 2001; Banff, Alberta, Canada
- 14 Sheehan F T, Drace J E. Human patellar tendon strain. A noninvasive, in vivo study. Clin Orthop . 2000; 370 201-207
-
15 Barrance P, Williams G, Sheehan F T, Buchanan T S. Measurement of tibiofemoral joint motion using cine-phase contrast MRI. Presented at the American Society of Biomechanics; August 8-11, 2001; San Diego, CA
- 16 Rebmann A J, Sheehan F T. Precise 3D skeletal kinematics using fast phase contrast magnetic resonance imaging. J Magn Reson Imaging . 2003; 17(2) 206-213
- 17 Drace J E, Pelc N J. Skeletal muscle contraction: analysis with use of velocity distributions from phase-contrast MR imaging. Radiology . 1994; 193 423-429
- 18 Drace J E, Pelc N J. Elastic deformation in tendons and myotendinous tissue: measurement by phase-contrast MR imaging. Radiology . 1994; 191 835-839
- 19 Glover G H, Pelc N J. A rapid-gated cine MRI technique. In: Kressel HY, ed. Magnetic Resonance Annual New York: Raven Press; 1988: 299-333
- 20 Pelc N J, Sommer F G, Li K C, Brosnan T J, Herfkens R J, Enzman D R. Quantitative magnetic resonance flow imaging. Magn Reson Q . 1994; 10 125-147
- 21 Pelc N J, Drangova M, Pelc L R. et al . Tracking of cyclical motion using phase contrast cine MRI velocity data. J Magn Reson Imaging . 1995; 5 339-345
- 22 Zhu Y, Drangova M, Pelc N. Fourier tracking of myocardial motion using cine-PC data. Magn Reson Med . 1996; 35 471-480
- 23 Gage J R, Perry J, Hicks R R, Koop S, Werntz J R. Rectus femoris transfer to improve knee function of children with cerebral palsy. Dev Med Child Neurol . 1987; 29 159-166
- 24 Riewald S A, Delp S L. The action of the rectus femoris muscle following distal tendon transfer: does it generate a knee flexion moment?. Dev Med Child Neurol . 1997; 39 99-105
- 25 Pappas G. Characterization of biceps brachii architecture and contraction mechanics using medical imaging techniques. In: Mechanical Engineering Stanford, CA, : Stanford University Press 2001
- 26 Kerr A B, Pauly J M, Hu B S. et al . Real-time interactive MRI on a conventional scanner. Magn Reson Med . 1997; 38(3) 355-367
- 27 Riederer S J, Wright R C, Ehman R L. et al . Real-time interactive color flow MR imaging. Radiology . 1991; 181 33-39
- 28 Nayak K S, Pauly J M, Kerr A B, Hu B S, Nishimura D G. Real-time color flow MRI. Magn Reson Med . 2000; 43 251-258