Zusammenfassung
Der Nachweis von disseminierten epithelialen Zellen im Knochenmark (KM) und Blut von Mammakarzinom-Patientinnen ist mit einer schlechten Prognose assoziiert. Jedoch haben Langzeitstudien gezeigt, dass nicht alle diese Patientinnen eine Fernmetastasierung erleiden. Daher ist über die reine Detektion hinaus die weiter gehende Charakterisierung disseminierter epithelialer Zellen zum Malignitätsnachweis und zur Prognoseabschätzung notwendig. Immunzytochemische Doppelfärbungen haben bereits viel dazu beigetragen, die Bedeutung dieser Zellen besser zu verstehen. Mittlerweile sind auch Genotypisierungen mittels Interphase-Fluoreszenz-in-situ-Hybridisierung (Interphase-FISH) möglich. Disseminierte epitheliale Zellen weisen zahlreiche chromosomale numerische Aberrationen auf. Des Weiteren konnten Amplifikationen für einzelne Gene, wie HER2 und MYC, detektiert werden. Die Genotypisierung kann somit über den Nachweis numerischer Aberrationen dazu beitragen, den malignen Charakter der epithelialen Zellen im Blut und Knochenmark zu beschreiben und zu bestätigen. Des Weiteren erlaubt die FISH-Analyse mit locusspezifischen DNA-Sonden (HER2, MYC) das tumorbiologische Verhalten der epithelialen Zellen besser einzuschätzen. Die Genotypisierung wird in Zukunft zur weiter gehenden Charakterisierung der disseminierten Tumorzellen verstärkt ihren Einsatz finden.
Abstract
The presence of disseminated epithelial cells in bone marrow of breast cancer patients is associated with poor prognosis. However, even during long-term follow-up not all of these patients will develop metastatic disease. Therefore, further characterization of disseminated epithelial cells is necessary to determine their malignant potential. Immunocytochemical double-staining was used in the majority of studies to get a better understanding of these cells. Recently, genotyping of disseminated tumor cells by interphase FISH has been established as a further tool to study the role of these cells in more detail. Using FISH technology, numerical aberrations for a variety of chromosomes were discovered in disseminated epithelial cells. Moreover, several studies demonstrated HER2 and MYC amplification in disseminated tumor cells.
These preliminary data suggest that genotyping can be used to describe and confirm the malignant nature of disseminated tumor cells. Moreover, the tumorbiological role of these epithelial cells can be studied in more detail by locus-specific probes for HER2 or MYC. Genotyping of tumor cells by interphase-FISH will become an important tool to characterize disseminated tumor cells.
Schlüsselwörter
Tumorzelldisseminierung - FISH - Mammakarzinom - Genotypisierung
Key words
Tumor cell dissemination - FISH - breast cancer - genotyping
Literatur
1
Solomayer E F, Diel I J, Salanti G, Hahn M, Gollan C, Schutz F, Bastert G.
Time independence of the prognostic impact of tumor cell detection in the bone marrow of primary breast cancer patients.
Clin Cancer Res.
2001;
7(12)
4102-4108
2
Gebauer G, Merkle E, Bauer M, Lang N.
Bone marrow micrometastases in breast cancer patients at the time of primary surgery: indicators of a beginning metastatic disease?.
Eur J Gynecol Oncol.
1999;
20
99-100
3
Racila E, Euhus D, Weiss A J, Rao C, Mc Conell J, Terstappen L W, Uhr J W.
Detection and characterization of carcinoma cells in the blood.
Proc Natl Acad Sci.
1998;
95
4589-4594
4
Fidler I J.
Metastasis: Quantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-Iodo-2′-desoxyuridine.
J Natl Cancer Inst.
1970;
45
773-782
5
Mansi J L, Berger U, McDonnell T, Pople A, Rayter Z, Gazet J C, Coombes R C.
The fate of bone marrow micrometastases in patients with primary breast cancer.
J Clin Oncol.
1989;
7
445-449
6
Pantel K, Schlimok G, Braun S, Kutter D, Lindemann F, Schaller G, Funke I, Izbicki J R, Riethmuller G.
Differential expression of proliferated-associated molecules in individual micrometastatic carcinoma cells.
J Natl Cancer Inst.
1993;
85
1419-1423
7
Pantel K, Schlimok G, Kutter D, Schaller G, Genz T, Wiebecke B, Backmann R, Funke I, Riethmuller G.
Frequent down-regulation of major histocompatibility class I antigen expression on individual micrometastatic carcinoma cells.
Cancer Res.
1999;
51
4712-4715
8
Braun S, Schlimok G, Heumos I, Schaller G, Riethdorf L, Riethmuller G, Pantel K.
ErbB2 overexpression on occult metastatic cells in bone marrow predicts poor clinical outcome of stage I - III breast cancer patients.
Cancer Res.
2001;
61
1890-1895
9
Brandt B, Roetger A, Heidl S, Jackisch C, Lelle R J, Assmann G, Zanker K S.
Isolation of blood-borne epithelium-derived c-erbB-2 oncoprotein-positive clustered cells from the peripheral blood of breast cancer patients.
Int J Cancer.
1998;
76
824-828
10
Diel I J, Costa S D, Kaufmann M.
Immunzytochemische Erkennung und prognostische Bedeutung einzelner Tumorzellen im Knochenmark beim Mammakarzinom.
Klin Lab.
1994;
40
1167-1178
11
Beckmann M W, Niederacher D, Schnürch H G, Gusterson B A, Bender H G.
Multistep carcinogenesis of breast cancer and tumour heterogeneity.
J Mol Med.
1997;
75
429-439
12
Fehm T, Sagalowsky A, Clifford E, Beitsch P, Saboorian H, Euhus D, Morrison L, Tucker T, Lane N, Ghadimi M, Heselmeyer-Haddad K, Ried T, Rao C, Uhr J.
Cytogenetic evidence that circulating epithelial cells in patients with cancer are malignant.
Clin Cancer Res.
2002;
8
2073-2084
13
Müller P, Weckermann D, Riethmüller G, Schlimok.
Detection of genetic alterations in micrometastatic cells in bone marrow of cancer patients by fluorescence in situ hybridization.
Cancer Genet Cytogenet.
1996;
88
8-16
14
Forus A, Hoifodt H K, Overli G E, Myklebost O, Fodstad O.
Sensitive fluorescent in situ hybridization method for the characterization of breast cancer cells in bone marrow aspirates.
Mol Pathol.
1999;
52
68-74
15
Theocharous P.
Characterization and primary culture of disseminated tumor cells.
Clin Res Clin Oncol.
2003;
129
16
16
Weber-Matthiesen K, Winkemann M, Müller-Hermelink A, Schlegelberger B, Grote W.
Simultaneous fluorescence immunophenotyping and interphase cytogenetics: A contribution to the characterization of tumor cells.
J Histochem Cytochem.
1992;
40
171-175
17
Speel E JM, Herbergs J, Ramaeker F CS, Hopman A HN.
Combined immunocytochemistry and fluorescence in situ hybridisation for simultaneous tricolor detection of cell cycle, genomic and phenotypic parameters of tumor cells.
J Histochem Cytochem.
1994;
42
961-966
18
Borgen E, Naume B, Nesland J M, Kvalheim G, Beiske K, Fodstad O, Diel I, Solomayer E F, Theocharous P, Coombes R C, Smith B M, Wunder E, Marolleau J, Garcia J, Pantel K.
Standardization of the immunocytochemical detection of cancer cells in BM and blood: I. Establishment of objective criteria for the evaluation of immunostained cells.
Cytotherapy.
1999;
5
377-388
19
Fischer K, Bentz M, Döhner H.
Fluoreszenz-in-situ-Hybridisierung.
Med Klinik.
1997;
92
279-283
20
Devilee P, Thierry R F, Kievits T, Kolluri R, Hopman A H, Willard H F, Pearson P L, Cornelisse C J.
Detection of chromosome aneuploidy in interphase nuclei from human primary breast tumors using chromosome-specific repetitive DNA-probes.
Cancer Res.
1988;
48
5825-5830
21
Schmitt F C, Soares R, Leitao D.
Detection of numerical chromosome 17 abnormalities in fine-needle aspirates of breast cancer using a novel in situ hybridization signal amplification method.
Diag Cytopathol.
1998;
19
141-146
22
Bieche I, Lidereau R.
Genetic alterations in breast cancer.
Genes Chrom Cancer.
1995;
14
227-251
23
Dutrillaux B, Gerbault-Seureau M, Remvikos Y, Zafrani B, Prieur M.
Breast cancer genetic evolution: I. Data from cytogenetics and DNA content.
Breast Cancer Res Treat.
1991;
19
245-255
24
Mueller P, Carroll P, Bowers E, Moore II D, Cher M, Presti J, Wessman M, Pallavicini M G.
Low frequency epithelial cells in bone marrow aspirates from prostate carcinoma patients are cytogenetically aberrant.
Cancer.
1989;
83
4538-546
25
Litle V R, Warren R S, Moore D, Pallavicini M G.
Molecular cytogenetic analysis of cytokeratin 20-labeled cells in primary tumors and bone marrow aspirates from colorectal carcinoma patients.
Cancer.
1997;
79
1664-1670
26
Zojer N, Fiegl M, Angerler J, Mullauer L, Gsur A, Roka S, Pecherstorfer M, Huber H, Drach J.
Interphase fluorescence in situ hybridization improves the detection of malignant cells in effusions from breast cancer patients.
Br J Cancer.
1997;
75
403-407
27
Ichikawa D, Hashimoto N, Hoshima M, Yamaguchi T, Sawai K, Nakamura Y, Takahashi T, Abe T, Inazawa J.
Analysis of numerical aberrations of specific chromosomes by fluorescent in situ hybridization as a diagnostic tool in breast cancer.
Cancer.
1996;
77
2064-2069
28
Fiegl M, Kaufmann H, Zojer N, Schuster R, Wiener H, Mullauer L, Roka S, Huber H, Drach J.
Malignant cell detection by fluorescence in situ hybridization (FISH) in effusions from patients with carcinoma.
Human Pathol.
2000;
31
448-455
29 Maas R D, Press M, Anderson S, Murphy M, Slamon D. Improved survival benefit from Herceptin (trastuzumab) in patients selected by fluorescence in situ hbridization (FISH). San Francisco; ASCO 2001: Abstract 85
30
Coon J S, Marcus E, Gupta-Burt S, Seelig S, Jacobson K, Chen S, Renta V, Fronda G, Preisler H D.
Amplification and overexpression of topoisomerase II alpha predict response to anthracycline-based therapy in locally advanced breast cancer.
Clin Cancer Res.
2002;
8
1061-1067
Dr. Tanja Fehm
Universitäts-Frauenklinik Tübingen
Calwer Straße 7
72076 Tübingen
eMail: tanja.fehm@med.uni-tuebingen.de