Abstract
The bicyclic 2′-thio-LNA ribothymidine phosphoramidite (13) has been synthesised using a strategy making the synthesis of 2′-thio-LNA convergent with the syntheses of LNA and 2′-amino-LNA. The key step was the formation of anhydro-nucleoside 4 that prevented unwanted oxetane (3) formation during debenzylation of the 3′-OBn group, while concomitantly furnishing the necessary inversion of configuration at the C2′ position. No oxetane was observed even under basic conditions. We believe that this is due to the rigid tricyclic anhydro-nucleoside limiting the conformational freedom of the furanose, thereby preventing the formation of a strained tetracyclic system. After removal of the benzyl protection group the liberated 3′-OH group (5) was easily benzoylated (6) and the anhydro-nucleoside ring opened to give the threo configured nucleoside 7. The 2′-thio-LNA ribothymidine phosphoramidite was synthesised in 9 steps from anhydro-nucleoside 4 in 30% yield. The 2′-thio-LNA 5-methylcytidine phosphoramidite was synthesised from nucleoside 12 using standard protocols.
Key words
nucleosides - bicyclic compounds - antisense agents - hydrogenations - bioorganic chemistry
References
1 New address: Daniel Sejer Pedersen, Cambridge University, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK.
2 LNA is defined as an oligonucleotide containing one or more 2′-O,4′-C-methylene-β-d-ribofuranosyl nucleotide mono-mers (LNA monomers).
[3]
[5]
For clarity the terms 2′-amino-LNA and 2′-thio-LNA are used herein for the LNA analogues, where the 2′-oxygen has been substituted by a nitrogen atom or a sulfur atom.
3
Koshkin AA.
Singh SK.
Nielsen P.
Rajwanshi VK.
Kumar R.
Meldgaard M.
Olsen CE.
Wengel J.
Tetrahedron
1998,
54:
3607
4
Obika S.
Nanbu D.
Hari Y.
Andoh J.-I.
Morio K.
Doi T.
Imanishi T.
Tetrahedron Lett.
1998,
39:
5401
5
Singh SK.
Nielsen P.
Koshkin AA.
Wengel J.
Chem. Commun.
1998,
455
6
Braasch DA.
Corey R.
Chem. Biol.
2000,
55:
1
7
Braasch DA.
Corey DR.
Nucleic Acids Res.
2002,
30:
5160
8
Childs JL.
Disney MD.
Turner DH.
Proc. Natl. Acad. Sci. U.S.A.
2002,
99:
11091
9
Crinelli R.
Bianchi M.
Gentilini L.
Magnani M.
Nucleic Acids Res.
2002,
30:
2435
10
Elayadi AN.
Braasch DA.
Corey DR.
Biochemistry
2002,
41:
9973
11
Fluiter K.
ten Asbroek ALMA.
de Wissel MB.
Jakobs ME.
Wissenbach M.
Olsson H.
Olsson O.
Oerum H.
Baas F.
Nucleic Acids Res.
2003,
31:
953
12
Hertoghs KM.
Ellis JH.
Catchpole IR.
Nucleic Acids Res.
2003,
31:
5817
13
Kurreck J.
Wyszko E.
Gillen C.
Erdmann VA.
Nucleic Acids Res.
2002,
30:
1911
14
Petersen M.
Wengel J.
Trends Biotechnol.
2003,
21:
74
15
Kumar R.
Singh SK.
Koshkin AA.
Rajwanshi VK.
Meldgaard M.
Wengel J.
Bioorg. Med. Chem. Lett.
1998,
8:
2219
16
Singh SK.
Kumar R.
Wengel J.
J. Org. Chem.
1998,
63:
10035
17
Singh SK.
Kumar R.
Wengel J.
J. Org. Chem.
1998,
63:
6078
18
Wnuk SF.
Tetrahedron
1993,
49:
9877
19
Covés J.
Le Hir de Fallois L.
Le Pape L.
Décout J.-L.
Fontecave M.
Biochemistry
1996,
35:
8595
20
Roy B.
Chambert S.
Lepoivre M.
Aubertin A.-M.
Balzarini J.
Décout J.-L.
J. Med. Chem.
2003,
46:
2565
21
Prakash TP.
Manoharan M.
Kawasaki AM.
Fraser AS.
Lesnik EA.
Sioufi N.
Leeds JM.
Teplova M.
Egli M.
Biochemistry
2002,
41:
11642
22
Koshkin AA.
Fensholdt J.
Pfundheller HM.
Lomholt C.
J. Org. Chem.
2001,
66:
8504
23
Rosenbohm C.
Christensen SM.
Sørensen MD.
Pedersen DS.
Larsen L.-E.
Wengel J.
Koch T.
Org. Biomol. Chem.
2003,
1:
655
24
Pedersen DS.
Rosenbohm C.
Koch T.
Synthesis
2002,
802
25
Pedersen DS.
Rosenbohm C.
Synthesis
2001,
2431
26 Mestre-C 2.3a software, http://qubrue.usc.es/.