Synthesis 2004(4): 583-589  
DOI: 10.1055/s-2004-815968
PAPER
© Georg Thieme Verlag Stuttgart · New York

Microwave-Assisted Ring Opening of Epoxides with Pyrimidine Nucleobases: A Rapid Entry into C -Nucleoside Synthesis

A. Khalafi-Nezhad*, M. N. Soltani Rad, A. Khoshnood
Department of Chemistry, College of Science, Shiraz University, Shiraz 71454, Iran
Fax: +98(711)2280926; e-Mail: khalafi@chem.susc.ac.ir;
Further Information

Publication History

Received 11 November 2003
Publication Date:
12 February 2004 (online)

Abstract

Microwave irradiation strongly accelerates the regio­selective nucleophilic ring opening of epoxides by pyrimidine nucleobases. In the presence of tetrabutylammonium bromide (TBAB), various bases were elaborated to determine the proper base in which it can activate N1 rather than N3 for alkylation. It was shown that MgO not only could serve as an eligible base, but also enhanced the selectivity and tendency of N1 for alkylation as compared with N3. The use of microwave irradiation provided dominant regioselective synthesis of N1-β-hydroxyalkylpyrimidines in moderate to good yields with a reaction time of less than 7 minutes.

    References

  • 1a Langa F. de la Cruz P. de la Hoz A. Diaz-Ortiz A. Diez-Barra E. Contemp. Org. Synth.  1997,  65:  373 
  • 1b Vega JA. Cueto S. Ramos A. Vaquero JJ. Garcia-Navio JL. Alvarez-Builla J. Ezquerra J. Tetrahedron Lett.  1996,  37:  6413 
  • 1c Almena I. Diaz-Ortiz A. Diez-Barra E. de la Hoz A. Loupy A. Chem. Lett.  1996,  333 
  • 1d Carrillo-Munoz JR. Bouvet D. Guibe-Jampel E. Loupy A. Petit A. J. Org. Chem.  1996,  61:  7746 
  • 1e Herradon B. Morcuende A. Valverde S. Synlett  1995,  61:  455 
  • 1f Forfar I. Cabil do P. Claramunt RM. Elguero J. Chem. Lett.  1994,  2079 
  • 2a Khalafi-Nezhad A. Soltani Rad MN. Hakimelahi GH. Helv. Chim. Acta  2003,  86:  2396 
  • 2b Khalafi-Nezhad A. Mokhtari B. Soltani Rad MN. Tetrahedron Lett.  2003,  44:  7325 
  • 2c Khalafi-Nezhad A. Alamdari F. Zekri N. Tetrahedron  2000,  56:  7503 
  • 2d Khalafi-Nezhad A. Hashemi A. Iran. J. Chem. Chem. Eng.  2001,  20:  9 ; Chem. Abstr. 2002, 137, 232608
  • 2e Khalafi-Nezhad A. Hashemi A. J. Chem. Res., Synop.  1999,  720 
  • 3a Microwave in Organic Synthesis   Loupy A. Wiely-VCH; Weinheim: 2002. 
  • 3b Hayes BL. Microwave Synthesis: Chemistry at the Speed of Light   CEM Publishing; Mathews, NC: 2002. 
  • 3c Varma RS. Advances in Green Chemistry: Chemical Synthesis Using Microwave Irradiation   Astra Zeneca Research Foundation, Kavitha Printers; Bangalore, India: 2002. 
  • 3d Ahluwalia VK. Aggarwal R. Organic Synthesis: Special Techniques   Alpha Science International Ltd.; Pangbourne / U.K.: 2001.  Chap. 3. p.90-114  
  • 3e Microwave-Enhanced Chemistry. Fundamental, Sample Preparation, and Applications   Kingston HM. Haswell SJ. American Chemical Society; Washington / D.C.: 1997. 
  • 3f Lew A. Krutzik PO. Hart ME. Chamberlin AR. J. Comb. Chem.  2002,  4:  95 
  • 3g Larhed M. Moberg C. Hallberg A. Acc. Chem. Res.  2002,  35:  717 
  • 3h Wathey B. Tierney J. Lidstrom P. Westman J. Drug Discovery Today  2002,  7:  373 
  • 3i Kuhnert N. Angew. Chem. Int. Ed.  2002,  41:  1863 
  • 3j Lidstorm P. Tierney J. Wathey B. Westman J. Tetrahedron  2001,  57:  9225 
  • 3k Perreux L. Loupy A. Tetrahedron  2001,  57:  9199 
  • 3l Varma RS. Green Chem.  1999,  1:  43 
  • 3m Caddick S. Tetrahedron  1995,  51:  10403 
  • 4 Declercq E. In Advance in Antiviral Drug Design   Vol.1:  Johnsson NG. Jai; Greenwich: 1993.  p.88-164  
  • 5 Munter T. Cotrell L. Stuart H. Kronberg L. Watson WP. Golding BT. Chem. Res. Toxicol.  2002,  15:  1549 
  • 7a Kondo K. Sato T. Takemoto K. Chem. Lett.  1973,  967 
  • 7b DiMenna WS. Piantadosi C. J. Med. Chem.  1978,  21:  1073 
  • 7c Martin JC. Smee DF. Verheyden JPH. J. Org. Chem.  1985,  50:  755 
  • 7d Biggadike K. Borthwick AD. Exall AM. Kirk BE. Roberts SM. Youds P. J. Chem. Soc., Chem. Commun.  1987,  1083 
  • 7e Novikov MS. Ozerov AA. Brel AK. Boreko EI. Vladyko GV. Korobchenko LV. Khim.-Farm. Zh.  1991,  25:  35 ; Chem. Abstr. 1992, 116, 128848
  • 7f Brodfuehrer PR. Howell HG. Sapino C. Vemishetti P. Tetrahedron Lett.  1994,  35:  3243 
  • 7g Allart B. Busson R. Razenski J. Van Aerschot A. Herdewign P. Tetrahedron  1999,  55:  6527 
  • 7h Allart B. Khan K. Rosemeyer H. Schepers G. Hendrix C. Rothenbacher K. Seela F. Van Aerschot A. Herdewign P. Chem. Eur. J.  1999,  5:  2424 
  • 7i Guan H.-P. Ksebuti NB. Kern EK. Zemlicka J. J. Org. Chem.  2000,  65:  5177 
  • 7j Pederson DS. Boesen T. Eldrup AB. Kiaer B. Madsen C. Henriksen U. Dahl O. J. Chem. Soc., Perkin Trans.1  2001,  1656 
  • 8 The phase-transfer catalyst (PTC)-mediated microwave-assisted organic reaction is well established and fully demonstrated (see Ref.1,5 and all references cited therein). However, in this reaction, TBAB not only absorbs the microwave irradiation but also generates in situ heat and increases the temperature higher than its melting point (100-103 °C). Under these conditions, TBAB creates the homogeneous media whose resemblance is not far from ionic liquids concept. For monographies on ionic liquid, see: Wasserscheid P. Welton T. Ionic Liquids in Synthesis   Wiley-VCH; Weinheim: 2002. 
  • 9 Khalafi-Nezhad A. Soltani Rad MN. Khoshnood A. Synthesis  2003,  2552 
  • 10 Vogel AI. Practical Organic Chemistry   Longman, Green and Co.; London: 1954.  p.161-176  
6

Rodriguez, H.; Perez, R.; Suarez, M.; Lam, A.; Cabrales, N.; Loupy, A. Fifth International Electronic Conference on Synthetic Organic Chemistry (ESCOC-5); http://www.mdpi.net/escoc-5/e0004/e0004.html