References
1a
Fisher LE.
Rosenkranz RP.
Clark RD.
Muchowski JM.
McClelland DL.
Michel A.
Caroon JM.
Galezzi E.
Eglen R.
Whiting RL.
Bioorg. Med. Chem. Lett.
1995,
5:
2371
1b
Sonesson C.
Wikström H.
Smith MW.
Svensson K.
Carlsson A.
Waters N.
Bioorg. Med. Chem. Lett.
1997,
7:
241
1c
Gerasimov M.
Marona-Lewicka D.
Kurrasch-Orbaugh DM.
Qandil AM.
Nichols DE.
J. Med. Chem.
1999,
42:
4257
1d
Ahn KH.
Lee SJ.
Lee C.-H.
Hong CY.
Park TK.
Bioorg. Med. Chem. Lett.
1999,
9:
1379
1e A series of nine papers on the antinociceptive activity of various substituted 3-arylpyrrolidines has been published by a research group from Parke Davis between 1961 and 1973 in J. Med. Chem., the last one being: Bowman RE.
Collier HOJ.
Lockhart IM.
Schneider C.
Webb NE.
Wright M.
J. Med. Chem.
1973,
16:
1181
2a
Elliott RL.
Ryther KB.
Anderson DJ.
Piattoni-Kaplan M.
Kuntzweiler TA.
Donnelly-Roberts D.
Arneric SP.
Holladay MW.
Bioorg. Med. Chem. Lett.
1997,
7:
2703
2b
Kim KH.
Lin N.-H.
Anderson DJ.
Bioorg. Med. Chem.
1996,
4:
2211
2c
Guzikowski AP.
Tamiz AP.
Acosta-Burruel M.
Hong-Bae S.
Cai SX.
Hawkinson JE.
Keana JFW.
Kesten SR.
Shipp CT.
Tran M.
Whittemore ER.
Woodward RM.
Wright JL.
Zhou Z.-L.
J. Med. Chem.
2000,
43:
984
3a
Basha FZ.
DeBernardis JF.
Pure Appl. Chem.
1994,
66:
2201
3b
Enyedy IJ.
Zaman WA.
Sakamuri S.
Kozikowski AP.
Johnson KM.
Wang SM.
Bioorg. Med. Chem. Lett.
2001,
11:
1113
4a
Wallén EAA.
Christiaans JAM.
Saario SM.
Forsberg MM.
Venalainen JI.
Paso HM.
Mannisto PT.
Gynther J.
Bioorg. Med. Chem.
2002,
10:
2199
4b
Feldman PL.
Brackeen MF.
Cowan DJ.
Marron BE.
Schoenen FJ.
Stafford JA.
Suh EM.
Domanico PL.
Rose D.
Leesnitzer MA.
Brawley ES.
Strickland AB.
Verghese MW.
Connolly KM.
Bateman-Fite R.
Noel LS.
Sekut L.
Stimpson SA.
J. Med. Chem.
1995,
38:
1505
For reviews, see:
5a
Pichon M.
Figadère B.
Tetrahedron: Asymmetry
1996,
7:
927
5b
1,3-Dipolar Cycloaddition Chemistry
Padwa A.
Wiley;
New York:
1984.
5c
Pearson WH.
Stoy P.
Synlett
2003,
903
5d For recent examples, see: Tietze LF.
Evers H.
Töpken E.
Helv. Chim. Acta
2002,
85:
4200
5e
Casas J.
Grigg R.
Nájera C.
Sansano JM.
Eur. J. Org. Chem.
2001,
1971
5f
Davis AS.
Gates NJ.
Lindsay KB.
Tang M.
Pyne SG.
Synlett
2004,
49
5g
Mota AJ.
Chiaroni A.
Langlois N.
Eur. J. Org. Chem.
2003,
4187
See for example:
6a
Pearson WH.
Szura DP.
Postich MJ.
J. Am. Chem. Soc.
1992,
114:
1329
6b
Zimmer R.
Hoffmann M.
Reissig H.-U.
Chem. Ber.
1992,
125:
2243
6c
Pulz R.
Al-Harrasi A.
Reissig H.-U.
Org. Lett.
2002,
4:
2353
6d
Vanucci C.
Brusson X.
Verdel V.
Zana F.
Dhimane H.
Lhommet G.
Tetrahedron Lett.
1995,
36:
2971
6e
Lorthiois E.
Marek I.
Normant JF.
Tetrahedron Lett.
1997,
38:
89
6f
Broka CA.
Shen T.
J. Am. Chem. Soc.
1989,
111:
2981
6g
Coldham I.
J. Chem. Soc., Perkin Trans. 1
1993,
1275
7
Seebach D.
Angew. Chem., Int. Ed. Engl.
1979,
18:
239 ; Angew. Chem. 1979, 91, 259
8
Meyer N.
Opatz T.
Synlett
2003,
1427
9a
Tsuge O.
Ueno K.
Kanemasa S.
Yorozu K.
Bull. Chem. Soc. Jpn.
1987,
60:
3347
9b
Tsuge O.
Kanemasa S.
Yorozu K.
Ueno K.
Bull. Chem. Soc. Jpn.
1987,
60:
3359
9c
Tsuge O.
Ueno K.
Kanemasa S.
Yorozu K.
Bull. Chem. Soc. Jpn.
1986,
59:
1809
9d See also: Roux-Schmitt MC.
Croisat D.
Seyden-Penne J.
Wartski L.
Cossentini M.
Pol. J. Chem.
1996,
70:
325
9e
Opio JO.
Labidalle S.
Galons H.
Miocque M.
Synth. Commun.
1991,
21:
1743
10
General Procedure for the Preparation of α-(Alkylideneamino)nitriles 3a-c: To a solution of the aminonitrile (10 mmol) in dry CH2Cl2 (20 mL) were added MgSO4 (1.1 equiv) and the aldehyde (1.1 equiv). The suspension was stirred overnight. The MgSO4 was filtered off and the organic phase was partitioned between a sat. NaHCO3 solution and CH2Cl2. The organic layer was dried over Na2SO4 and the solvent was evaporated in vacuo. Recrystallization yielded the pure imines. In the case of products 3a and 3b, aminoacetonitrile sulfate was used and 1 equiv of Et3N was added to the reaction mixture.
11
Rodima T.
Kaljurand I.
Pihl A.
Mäemets V.
Leito I.
Koppel IA.
J. Org. Chem.
2002,
67:
1873
12a
Tatsukawa A.
Kawatake K.
Kanemasa S.
Rudziski JM.
J. Chem. Soc., Perkin Trans. 2
1994,
2525
12b
Domingo LR.
J. Org. Chem.
1999,
64:
3922
13
General Procedure for the Preparation of Pyrrolidines 8a-g: To a solution of the α-(alkylideneamino)nitrile (1.45 mmol) in THF (5 mL) was added a solution of DBU (1.59 mmol, 1.1 equiv) in THF (2 mL) under argon at r.t. After addition of a solution of methyl vinyl ketone (1.59 mmol, 1.1 equiv) in THF (3 mL), the mixture was stirred for 90 min. The reaction was stopped by addition of a mixture of EtOH (87 mmol, 60 equiv) and HOAc (11.6 mmol, 8 equiv). After NaBH3CN (5.8 mmol, 4 equiv) was added, the mixture was stirred at r.t. overnight. The reaction mixture was washed twice with 1 N NaOH and the combined aqueous phases were reextracted with EtOAc. The combined organic layers were extracted three times with 1 N HCl and the combined aqueous phases were made alkaline by addition of NaOH. Extraction with CH2Cl2, drying over Na2SO4 and evapora-tion of the solvent in vacuo gave a crude product, which was further purified by column chromatography, preparative TLC or HPLC if necessary. Note: Compounds 8f and 8g were too lipophilic for an efficient extraction with 1 N HCl. They were directly purified by chromatographic methods.
14 Under identical conditions, compounds 3a and 3b could not be reacted cleanly with α,β-unsaturated aldehydes.
15
Spectroscopic Data of Compound cis
-8e: 1H NMR (400 MHz, CDCl3): δ = 7.28-7.21 (m, 2 H, Ph), 7.19-7.10 (m, 3 H, Ph), 6.92 (d, 1 H, J
2
′
,6
′ = 1.8 Hz, H-2′), 6.90 (dd, 1 H, J
5
′
,6
′ = 8.1 Hz, J
2
′
,6
′ = 1.8 Hz, H-6′), 6.83 (d, 1 H, J
5
′
,6
′ = 8.1 Hz, H-5′), 3.90, 3.88 (2 s, 6 H, OCH3), 3.81 [d, 1 H, J = 14.1 Hz, CH2C6H3 (OMe)2], 3.75 [d, 1 H, J = 14.1 Hz, CH2C6H3 (OMe)2], 2.93-2.81 (m, 2 H, CH2Ph, H-2), 2.74-2.60 (m, 1 H, H-5), 2.38 (dd, 1 H, J
gem = 12.4 Hz, J
vic = 9.2 Hz, CH2Ph), 1.81-1.70 (m, 1 H, H-4a), 1.67-1.44 (m, 2 H, H-3a, H-3b), 1.42-1.30 (m, 1 H, H-4b), 1.07 (d, 3 H, J = 6.0 Hz, CH3). Irradiation (transient NOE) at δ = 2.68 ppm (H-5) enhances the signals at δ = 6.90 ppm (H-6′, 0.8%), 6.83 ppm (H-5′, 0.2%), 3.81 ppm [CH2C6H3 (OMe)2, 1.1%], 3.75 ppm [CH2C6H3 (OMe)2, 1.0%], 2.83 ppm (H-2, 0.6%), 1.72 ppm (H-4a, 2.2%), 1.55 ppm (H-3, 0.8%), 1.35 ppm (H-4b, 0.6%), 1.07 ppm (CH3, 1.1%). 13C NMR (100.6 MHz, CDCl3): δ = 148.60, 147.87 (C-3′, C-4′), 140.30 (C-1 Ph), 137.28 (C-1′), 129.18, 128.08, 125.77 (Ph), 121.14 (C-6′), 112.56 (C-2′), 110.65 (C-5′), 66.11 (C-2), 60.09 (C-5), 56.28 [CH2C6H3 (OMe)2], 55.85 (OCH3), 42.46 (CH2Ph), 31.55 (C-4), 28.80 (C-3), 20.80 (CH3).
Spectroscopic Data of Compound trans
-8e: 1H NMR (400 MHz, CDCl3): δ = 7.26-7.20 (m, 2 H, Ph), 7.18-7.12 (m, 1 H, Ph), 7.05 (d, 2 H, J = 7 Hz, H-2, H-6 Ph), 6.98 (br s, 1 H, H-2′), 6.92 (dd, 1 H, J
5
′
,6
′ = 8.1 Hz, J
2
′
,6
′= 1.3 Hz, H-6′), 6.83 (d, 1 H, J
5
′
,6
′ = 8.1 Hz, H-5′), 3.92 [d, 1 H, J = 13.6 Hz, CH2-C6H3 (OMe)2], 3.90, 3.89 (2 s, 6 H, OCH3), 3.62 [d, 1 H, J = 13.6 Hz, CH2C6H3(OMe)2], 3.17-3.05 (m, 2 H, H-2, H-5), 2.96 (dd, 1 H, J
gem = 12.9 Hz, J
vic = 3.5 Hz, CH2Ph), 2.36 (dd, 1 H, Jgem = 12.9 Hz, J = 10.0 Hz, CH2Ph), 2.05-1.92 (m, 1 H, H-4a), 1.83-1.70 (m, 1 H, H-3a), 1.56-1.46 (m, 1 H, H-3b), 1.44-1.33 (m, 1 H, H-4b), 0.99 (d, 3 H, J = 6.2 Hz, CH3). 13C NMR (100 MHz, CDCl3): δ = 148.87, 147.69 (C-3′, C-4′); 140.49 (C-1 Benzyl), 136.52 (C-1′), 129.26, 128.12, 125.67 (Benzyl); 120.35 (C-6′); 111.72 (C-2′); 110.71 (C-5′); 61.91 (C-2); 55.89 (OCH3); 55.40 (C-5); 51.71 [CH2C6H3(OMe)2]; 37.63 (CH2Ph); 30.77 (C-4); 27.55 (C-3); 16.76 (CH3).
16a
van der Werf A.
Kellogg RM.
Tetrahedron Lett.
1991,
32:
3727
16b
Kanemasa K.
Uchida O.
Wada E.
J. Org. Chem.
1990,
55:
4411
16c
Alvarez-Ibarra C.
Csákӱ AG.
Maroto M.
Quiroga ML.
J. Org. Chem.
1995,
60:
6700
17
Scott WL.
Alsina J.
O’Donnell MJ.
J. Comb. Chem.
2003,
5:
684
18a
O’Donnell MJ.
Bennett WD.
Wu S.
J. Am. Chem. Soc.
1989,
111:
2353
18b For a review, see: O’Donnell MJ.
Aldrichimica Acta
2001,
34:
3