Int J Sports Med 2005; 26(1/02): 16-26
DOI: 10.1055/s-2004-817914
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Physiological, Biochemical and Psychological Markers of Strenuous Training-Induced Fatigue

G. J. W. M. Rietjens1 , H. Kuipers1 , J. J. Adam3 , W. H. M. Saris2 , E. van Breda1 , D. van Hamont1 , H. A. Keizer1
  • 1Department of Movement Sciences, Maastricht University, Maastricht, The Netherlands
  • 2Department of Human Biology, Maastricht University, Maastricht, The Netherlands
  • 3Brain and Behavior Institute, Maastricht University - Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht, The Netherlands
Further Information

Publication History

Accepted after revision: November 15, 2003

Publication Date:
10 September 2004 (online)

Abstract

The purpose of the study was to investigate whether severe fatigue, possibly leading to overreaching, could be diagnosed at an early stage by a combination of parameters. Seven well-trained male subjects (age [mean ± SD]: 25.3 ± 4.7 yr; body mass: 76 ± 6.6 kg; VO2max: 61.1 ± 7 ml · kg-1 · min-1) increased their training load by doubling their training volume and increasing the intensity by 15 % over a period of two weeks. Before and after this intensified training period subjects underwent a series of tests including a maximal incremental cycle ergometer test (Wmax) with continuous ventilatory measurements and blood lactate values, time trial, basal blood parameter tests (red and white blood profile), hormones [growth hormone (GH), insulin-like growth factor 1(IGF-1), adreno-corticotropic hormone (ACTH), cortisol], neuro-endocrine stress test [short insulin tolerance test (SITT), combined anterior pituitary test (CAPT) and exercise], a shortened Profile of Mood State (POMS), the estimated rate of perceived exertion (RPE) and a cognitive reaction time test. The intensified training period resulted in a significant increase of the training load (p < 0.01), training monotony (p < 0.01) and training strain (p < 0.01). The RPE during training increased significantly (p < 0.01) during the intensified training period. Total mood score obtained from the POMS tended to increase (p = 0.06), reflecting an increase in worse mood state. A novel finding was that reaction times increased significantly, indicating that overreaching might adversely affect speed of information processing by the brain, especially for the most difficult conditions. After the intensified training period, neither changes in exercise-induced plasma hormone values, nor SITT values were observed. During the CAPT only cortisol showed a significant decrease after the intensified training period. Hemoglobin showed a significant decrease after the intensified training period whereas hematocrit, red blood cell count (RBC) and MCV tended to decrease. The intensified training had no effect on physical performance (Wmax or time trial), maximal blood lactate, maximal heart rate and white blood cell profile. The most sensitive parameters for detecting overreaching are reaction time performance (indicative for cognitive brain functioning), RPE and to a lesser extend the shortened POMS. This strongly suggests, that central fatigue precedes peripheral fatigue. All other systems,including the neuro-endocrine, are more robust and react most likely at a later stage in exhaustive training periods.

References

  • 1 Adam J J, Paas F G, Teeken J C, van Loon E M, van Boxtel M P, Houx P J, Jolles J. Effects of age on performance in a finger-precuing task.  J Exp Psychol Hum Percept Perform. 1998;  24 870-883
  • 2 Akinmokun A, Selby P L, Ramaiya K, Alberti K G. The short insulin tolerance test for determination of insulin sensitivity: a comparison with the euglycaemic clamp.  Diabet Med. 1992;  9 432-437
  • 3 Armstrong L E, VanHeest J L. The unknown mechanism of the overtraining syndrome: clues from depression and psychoneuroimmunology.  Sports Med. 2002;  32 185-209
  • 4 Baj Z, Kantorski J, Majewska E, Zeman K, Pokoca L, Fornalczyk E, Tchorzewski H, Sulowska Z, Lewicki R. Immunological status of competitive cyclists before and after the training season.  Int J Sports Med. 1994;  15 319-324
  • 5 Barron G L, Noakes T D, Levi W, Smith C, Millar R P. Hypothalmic dysfunction in overtrained athletes.  J Clin Endocrinol Metab. 1985;  60 803-806
  • 6 Berglund B, Safstrom H. Psychological monitoring and modulation of training load of world-class canoeists.  Med Sci Sports Exerc. 1994;  26 1036-1040
  • 7 Borg G A. Psychophysical bases of perceived exertion.  Med Sci Sports Exerc. 1982;  14 377-381
  • 8 Borghouts L B, Backx K, Mensink M F, Keizer H A. Effect of training intensity on insulin sensitivity as evaluated by insulin tolerance test.  Eur J Appl Physiol. 1999;  80 461-466
  • 9 Bruin G, Kuipers H, Keizer H A, Vander Vusse G J. Adaptation and overtraining in horses subjected to increasing training loads.  J Appl Physiol. 1994;  76 1908-1913
  • 10 Chaouloff F. Physiopharmacological interactions between stress hormones and central serotonergic systems.  Brain Res Brain Rev. 1993;  18 1-32
  • 11 Clement D B, Asmundson R C, Medhurst C W. Hemoglobin values: comparative survey of the 1976 Canadian Olympic team.  Can Med Assoc J. 1977;  117 614-616
  • 12 Cluydts R, Visser P. Mood and sleep. I. Effects of the menstrual cycle.  Waking Sleeping. 1980;  4 193-197
  • 13 Cluydts R, Visser P. Mood and sleep. II. Effects of aversive pre-sleep stimulation.  Waking Sleeping. 1980;  4 199-203
  • 14 Durnin J V, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years.  Br J Nutr. 1974;  32 77-97
  • 15 Fiasche R, Fideleff H L, Moisezowicz J, Frieder P, Pagano S M, Holland M. Growth hormone neurosecretory dysfunction in major depressive illness.  Psychoneuroendrinology. 1995;  20 727-733
  • 16 Fitzgerald L. Overtraining increases the susceptibility to infection.  Int J Sports Med. 1991;  12 5-8
  • 17 Foster C. Monitoring training in athletes with reference to overtraining syndrome.  Med Sci Sports Exerc. 1998;  30 1164-1168
  • 18 Fry A C, Kraemer W J. Resistance exercise overtraining and overreaching. Neuroendocrine responses.  Sports Med. 1997;  23 106-129
  • 19 Fry R W, Morton A R, Crawford G P, Keast D. Cell numbers and in vitro responses of leucocytes and lymphocyte subpopulations following maximal exercise and interval training sessions of different intensities.  Eur J Appl Physiol. 1992;  64 218-227
  • 20 Fry R W, Morton A R, Keast D. Overtraining in athletes. An update.  Sports Med. 1991;  12 32-65
  • 21 Fry R W, Morton A R, Keast D. Periodisation and the prevention of overtraining.  Can J Sport Sci. 1992;  17 241-248
  • 22 Gabriel H H, Urhausen A, Valet G, Heidelbach U, Kindermann W. Overtraining and immune system: a prospective longitudinal study in endurance athletes.  Med Sci Sports Exerc. 1998;  30 1151-1157
  • 23 Gastmann U AL, Lehmann M J. Monitoring overload and regeneration in cyclists. Lehmann M, Foster C, Gastmann U, Keizer H, Steinacker JM Overload, Performance Incompetence and Regeneration in Sport. New York; Kluwer, Academic/Plenum Publisher 1999
  • 24 Guglielmini C, Casoni I, Patracchini M, Manfredini F, Grazzi G, Ferrari M, Conconi F. Reduction of Hb levels during the racing season in nonsideropenic professional cyclists.  Int J Sports Med. 1989;  10 352-356
  • 25 Harro J, Rimm H, Harro M, Grauberg M, Karelson K, Viru A M. Association of depressiveness with blunted growth hormone response to maximal physical exercise in young healthy men.  Psychoneuroendocrinology. 1999;  24 505-517
  • 26 Jeukendrup A, Saris W H, Brouns F, Kester A D. A new validated endurance performance test.  Med Sci Sports Exerc. 1996;  28 266-270
  • 27 Keppel G. Design and Analysis: A Researcher's Handbook. 2nd rev. ed. New York; Englewood Cliffs 1982: 669
  • 28 Kuipers H, Keizer H A. Overtraining in elite athletes. Review and directions for the future.  Sports Med. 1988;  6 79-92
  • 29 Kuipers H, Verstappen F T, Keizer H A, Geurten P, van Kranenburg G. Variability of aerobic performance in the laboratory and its physiologic correlates.  Int J Sports Med. 1985;  6 197-201
  • 30 Lehmann M, Baumgartl P, Wiesenack C, Seidel A, Baumann H, Fischer S, Spori U, Gendrisch G, Kaminski R, Keul J. Training - overtraining: Influence of a defined increase in training volume vs training intensity on performance, catecholamines and some metabolic parameters in experienced middle- and long-distance runners.  Eur J Appl Physiol. 1992;  64 169-177
  • 31 Lehmann M, Dickhuth H H, Gendrisch G, Lazar W, Thum M, Kaminski R, Aramendi J F, Peterke E, Wieland W, Keul J. Training - overtraining. A prospective, experimental study with experienced middle- and long-distance runners.  Int J Sports Med. 1991;  12 444-452
  • 32 Lehmann M, Foster C, Gastmann U, Keizer H, Steinacker J M. Definition, types, symptoms, findings, underlying mechanisms, and frequency of overtraining and overtraining syndrome. Lehmann M, Foster C, Gastmann U, Keizer H, Steinacker JM Overload, Performance Incompetence, and Regeneration in Sport. New York, Boston, Dordrecht, London, Moscow; Kluwer Academic/Plenum Publisher 1999: 1-6
  • 33 Lehmann M, Foster C, Keul J. Overtraining in endurance athletes: a brief review.  Med Sci Sports Exerc. 1993;  25 854-862
  • 34 Lehmann M, Gastmann U, Petersen K G, Bachl N, Seidel A, Khalaf A N, Fischer S, Keul J. Training - overtraining: Performance, and hormone levels, after a defined increase in training volume versus intensity in experienced middle- and long-distance runners.  Br J Sports Med. 1992;  26 233-242
  • 35 Lehmann M, Knizia K, Gastmann U, Petersen K G, Khalaf A N, Bauer S, Kerp L, Keul J. Influence of 6-week, 6 days per week, training on pituitary function in recreational athletes.  Br J Sports Med. 1993;  27 186-192
  • 36 Lehmann M, Mann H, Gastmann U, Keul J, Vetter D, Steinacker J M, Haussinger D. Unaccustomed high-mileage vs intensity training-related changes in performance and serum amino acid levels.  Int J Sports Med. 1996;  17 187-192
  • 37 Mackinnon L T, Hooper S L, Jones S, Gordon R D, Bachmann A W. Hormonal, immunological, and hematological responses to intensified training in elite swimmers.  Med Sci Sports Exerc. 1997;  29 1637-1645
  • 38 Meyer D E, Osman A M, Irwin D E, Yantis S. Modern mental chronometry.  Biol Psychol. 1988;  26 3-67
  • 39 Miller J. Discrete versus continuous stage models of human information processing: in search of partial output.  J Exp Psychol Hum Percept Perform. 1982;  8 273-296
  • 40 Morgan W P. Affective beneficence of vigorous physical activity.  Med Sci Sports Exerc. 1985;  17 94-100
  • 41 Morgan W P, Brown D R, Raglin J S, O'Connor P J, Ellickson K A. Psychological monitoring of overtraining and staleness.  Br J Sports Med. 1987;  21 107-114
  • 42 Morgan W P, Costill D L, Flynn M G, Raglin J S, O'Connor P J. Mood disturbance following increased training in swimmers.  Med Sci Sports Exerc. 1988;  20 408-414
  • 43 Peino R, Leal A, Garcia-Mayor R V, Cordido F, Micic D, Kopeschaar H, Dieguez C, Casanueva F F. The use of growth hormone (GH) secretagogues in the diagnosis of GH deficiency in humans.  Growth Horm IGF Res. 1999;  9 101-105
  • 44 Raglin J S, Morgan W P. Development of a scale for use in monitoring training-induced distress in athletes.  Int J Sports Med. 1994;  15 84-88
  • 45 Raglin J S, Morgan W P, Luchsinger A E. Mood and self-motivation in successful and unsuccessful female rowers.  Med Sci Sports Exerc. 1990;  22 849-853
  • 46 Raglin J S, Morgan W P, O'Connor P J. Changes in mood states during training in female and male college swimmers.  Int J Sports Med. 1991;  12 585-589
  • 47 Richter E A, Turcotte L, Hespel P, Kiens B. Metabolic responses to exercise. Effects of endurance training and implications for diabetes.  Diabetes Care. 1992;  15 1767-1776
  • 48 Rietjens G J, Kuipers H, Hartgens F, Keizer H A. Red blood cell profile of elite Olympic distance triathletes. A three-year follow-up.  Int J Sports Med. 2002;  23 391-396
  • 49 Rowbottom D G, Keast D, Goodman C, Morton A R. The haematological, biochemical and immunological profile of athletes suffering from the overtraining syndrome.  Eur J Appl Physiol. 1995;  70 502-509
  • 50 Sapolsky R M. Why stress is bad for your brain.  Science. 1996;  273 749-750
  • 51 Sapolsky R M, Romero L M, Munck A U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions.  Endocr Rev. 2000;  21 55-89
  • 52 Schall J D. Neural correlates of decision processes: neural and mental chronometry.  Curr Opin Neurobiol. 2003;  13 182-186
  • 53 Tergau F, Geese R, Bauer A, Baur S, Paulus W, Reimers C D. Motor cortex fatigue in sports measured by transcranial magnetic double stimulation.  Med Sci Sports Exerc. 2000;  32 1942-1948
  • 54 Urhausen A, Gabriel H, Kindermann W. Blood hormones as markers of training stress and overtraining.  Sports Med. 1995;  20 251-276
  • 55 Urhausen A, Gabriel H H, Kindermann W. Impaired pituitary hormonal response to exhaustive exercise in overtrained endurance athletes.  Med Sci Sports Exerc. 1998;  30 407-414
  • 56 Urhausen A, Kindermann W. Diagnosis of overtraining: what tools do we have?.  Sports Med. 2002;  32 95-102
  • 57 Verde T, Thomas S, Shephard R J. Potential markers of heavy training in highly trained distance runners.  Br J Sports Med. 1992;  26 167-175
  • 58 Viru A, Karelson K, Smirnova T. Stability and variability in hormonal responses to prolonged exercise.  Int J Sports Med. 1992;  13 230-235

H. A. Keizer

Department of Movement Science · Maastricht University

P.O. Box 616

6200 MD Maastricht

The Netherlands

Phone: + 31433881397

Fax: + 31 4 33 67 09 72

Email: Hans.keizer@bw.unimaas.nl