J Reconstr Microsurg 2004; 20(1): 35-41
DOI: 10.1055/s-2004-818048
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA

Continuous and Real-Time Blood Perfusion Monitoring in Prefabricated Flaps

Peter K.M Maitz1 , Monica B. Khot3 , 4 , Horacio F. Mayer2 , Gregory T. Martin3 , Julian J. Pribaz2 , H. Frederick Bowman3 , Dennis P. Orgill2
  • 1Concord Hospital, University of Sydney, Concord NSW, Australia
  • 2Tissue Engineering Laboratory, Division of Plastic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
  • 3Harvard-MIT Biomedical Engineering Center, Massachusetts Institute of Technology, Cambridge, MA
  • 4Indiana Heart Physicians, Indianapolis, IN
Further Information

Publication History

accepted: July 28, 2003

Publication Date:
18 February 2004 (online)

The Thermal Diffusion Probe (TDP) System allows continuous real-time measurement of tissue perfusion in flaps. The authors used a TDP with two thermistors, one active, the other passive, embedded in a 0.9-mm diameter catheter to measure continuous tissue perfusion in rabbit epigastric flaps. The distal thermistor is heated to 2° C above the tissue baseline temperature. The power required to maintain this temperature difference is mathematically related to the tissue perfusion in the volume surrounding the probe tip.

Central and peripheral TDPs were placed. The TDP effectiveness in detecting and measuring daily tissue perfusion in buried epigastric flaps was tested. Contralateral epigastric pedicles were transposed into the flaps prior to ligation of the original pedicle. Flaps with transposed pedicles showed a progressive and significant increase in tissue perfusion during the initial 3 weeks of the experiment, compared to flaps without the pedicle transfer.

The TDP System is a useful experimental method for the continuous and real-time quantification of flap perfusion and may be helpful in making clinical decisions about prefabricated flap transfer.

REFERENCES

  • 1 Pribaz J J, Weiss D D, Mulliken J B, Eriksson E. Prelaminated free flap reconstruction of complex central facial defects.  Plast Reconstr Surg. 1999;  104 357-365
  • 2 Pribaz J J, Fine N, Orgill D P. Flap prefabrication in the head and neck: a 10-year experience.  Plast Reconstr Surg. 1999;  103 808-820
  • 3 Shen T Y. Microvascular transplantation of prefabricated free thigh flap (Letter).  Plast Reconstr Surg. 1982;  69 568
  • 4 Jones B M. Monitors for the cutaneous microcirculation.  Plast Reconstr Surg. 1984;  73 843-850
  • 5 Bowman H F. Estimation of tissue blood flow. In: Eberhart RC, Shitzer A Heat Transfer in Medicine and Biology: Analysis and Application New York; Plenum Publishing Corporation 1984: 193-230
  • 6 Klar E, Kraus T, Bredt M, et al.. First clinical realization of continuous monitoring of liver microcirculation after transplantation by thermodiffusion.  Transpl Int. 1996;  9 S140-S143
  • 7 Vajkoczy P, Horn P, Bauhuf C, et al.. Effect of intra-arterial papaverine on regional cerebral blood flow in hemodynamically relevant cerebral vasospasm.  Stroke. 2001;  32 498-505
  • 8 Newman W H, Bowman H F, Orgill D P, Klar E. A methodology for in vivo measurements of blood flow in small tissue volumes.  Advances in Biological Heat and Mass Transfer, ASME HTD. 1995;  322 99-105
  • 9 Falco N A, Pribaz J J, Eriksson E. Vascularization of skin following implantation of an arterio-venous pedicle: implications in flap prefabrications.  Microsurgery. 1992;  13 249-254
  • 10 Duffy F J, Pribaz J J, Hergrueter C A, et al.. Flap prefabrication using an exteriorized vascular pedicle in a rabbit ear model.  Br J Plast Surg. 1993;  46 279-284
  • 11 Duffy F J, Maitz P KM, Hergrueter C A, et al.. Maximizing flap survival in a prefabrication model using exogenous and endogenous bFGF: a new approach.  Microsurgery. 1996;  17 176-179
  • 12 Maitz P KM, Pribaz J J, Duffy F J, et al.. The value of the delay phenomenon in flap prefabrication: an experimental study in rabbits.  Br J Plast Surg. 1994;  47 149-154
  • 13 Maitz P KM, Pribaz J J, Hergrueter C A. Impact of tissue expansion on flap prefabrication: an experimental study in rabbits.  Microsurgery. 1996;  17 35-40
  • 14 Furnas H, Rosen J M. Monitoring in microvascular surgery.  Ann Plast Surg. 1991;  26 265-272
  • 15 Ono H, Tamai S, Yajima H, et al.. Blood flow through prefabricated flaps-an experimental study in rabbits.  Br J Plast Surg. 1993;  46 449-455
  • 16 Clinton M S, Sepka R S, Bristol D, et al.. Establishment of normal ranges of laser Doppler blood flow in autologous tissue transplants.  Plast Reconstr Surg. 1991;  87 299-309
  • 17 Marks N J, Trachy R E, Cummings C W. Dynamic variations in blood flow as measured by laser Doppler velocimetry: a study in rat skin flaps.  Plast Reconstr Surg. 1984;  73 804-810
  • 18 Wardell K, Jakobsson A, Nilsson G E. Laser Doppler perfusion imaging by dynamic light scattering.  IEEE Trans Biomed Eng. 1993;  40 309-316
  • 19 Arnold F, He C F, Jia C Y, Cherry G W. Perfusion imaging of skin island flap blood flow by a scanning laser-Doppler technique.  Br J Plast Surg. 1995;  48 280-287
  • 20 Martin G T, Bowman H F. Validation of real-time continuous perfusion measurement.  Medical and Biological Engineering and Computing. 2000;  38 319-325

Dennis P OrgillM.D. Ph.D. 

Division of Plastic Surgery, Brigham and Women's Hospital

75 Francis Street

Boston, MA 02115