Pneumologie 2004; 58(5): 330-338
DOI: 10.1055/s-2004-818352
Übersicht
© Georg Thieme Verlag Stuttgart · New York

Vasoaktives Intestinales Polypeptid (VIP) im Atemtrakt: Physiologie und Pathophysiologie

Vasoactive Intestinal Polypeptide in the Respiratory Tract: Physiology and PathophysiologyD.  A.  Groneberg1 , K.  F.  Rabe2 , U.  Wagner3 , A.  Fischer1
  • 1Klinische Forschergruppe Allergologie, Charité - Universitätsmedizin Berlin, Freie Universität Berlin & Humboldt-Universität zu Berlin, 13353 Berlin (Leiter: Prof. Dr. A. Fischer)
  • 2Abteilung für Lungenheilkunde, Universitätsklinikum Leiden, NL-2300 RC Leiden, Niederlande (Leiter: Prof. Dr. K. F. Rabe)
  • 3Medizinische Klinik, Abteilung für Lungenheilkunde, Universitätsklinikum, Baldingerstraße 1, 35043 Marburg (Leiter: Prof. Dr. C. Vogelmeier)
Further Information

Publication History

Eingang: 17. November 2003

Nach Revision akzeptiert: 31. Januar 2004

Publication Date:
26 May 2004 (online)

Zusammenfassung

Durch die Charakterisierung verschiedenster pulmonaler Effekte gewannen peptiderge Neuromediatoren in den letzten Jahren zunehmend an Bedeutung für das Verständnis physiologischer und pathophysiologischer Mechanismen im Atemtrakt. Dabei spielt Vasoaktives Intestinales Polypeptid (VIP) eine besondere Rolle aufgrund seiner potenziell anti-inflammatorischen und immunmodulierenden Wirkung. Es wird neurophysiologisch zu den Mediatoren des inhibierenden nicht-adrenergen nicht-cholinergen Nervensystems (i-NANC) gezählt. In den menschlichen Atemwegen sind VIP-haltige Nervenfasern in der glatten Muskulatur von Trachea und Bronchien sowie von Pulmonalgefäßen vorhanden. Neben starken vasodilatorischen Eigenschaften besitzt VIP auch eine hohe bronchodilatorische Potenz. Es gibt eine Vielzahl pulmonaler Erkrankungen bei denen VIP pathophysiologisch beteiligt sein könnte. In dieser Hinsicht konnten veränderte VIP-Spiegel bei entzündlichen Erkrankungen der oberen und unteren Atemwege sowie bei der primären pulmonalen Hypertonie nachgewiesen werden. Aufgrund der schnellen enzymatischen Inaktivierung konnte eine auf VIP basierende Therapie bis jetzt noch nicht zum klinischen Einsatz gebracht werden, obwohl VIP starke bronchodilatorische Eigenschaften besitzt. Auch konnte der Einsatz synthetischer VIP-Agonisten keine Therapieverbesserung im Vergleich zur herkömmlichen Asthmatherapie bieten. Diesen Befunden stehen tierexperimentelle Daten zur Immunmodulation durch VIP gegenüber. Sie weisen auf einen zukünftigen Einsatz des Mediators und seiner Agonisten bei der Behandlung immunologischer Erkrankungen hin.

Abstract

Peptidergic neuromediators have gained importance in the field of respiratory physiology and pathophysiology due to the characterisation of numerous pulmonary effects in the past years. With regard to the multitude of mediators, the neuropeptide vasoactive intestinale polypeptide (VIP) plays a special role as it exerts potent anti-inflammatory and immunomodulatory effects. Neurophysiologically the peptide has been attributed to the family of the inhibitory non-adrenergic non-cholinergic (i-NANC) neuromediators of the pulmonary innervation. VIP-containing nerve fibres are localized in the airway and vascular smooth muscle layers of trachea and bronchi in the human respiratory tract. Apart from strong vasodilatory effects, the peptide also shows a high bronchodilatory potency. In a large number of respiratory diseases VIP may play a pathophysiological role. In this respect, increased levels of VIP have been demonstrated for inflammatory diseases of the upper and lower airways and the peptide may also play a role in pulmonary hypertension. Due to its fast enzymatic cleavage, VIP-based therapies have not been used in routine therapy so far. Also, the use of synthetic VIP-agonists did not lead to an improved outcome in patients with bronchial asthma if compared to classical drugs. However, recent data from animal experiments indicate potent immunomodulatory effects which suggest a future use of this mediator and its agonists in the therapy of immune diseases.

  • 1 Barnes P J. Asthma as an axon reflex.  Lancet. 1986;  1 242-245
  • 2 Chung K F, Barnes P J. Cytokines in asthma.  Thorax. 1999;  54 825-857
  • 3 Gozes I, Fridkin M, Brenneman D E. A VIP hybrid antagonist: from developmental neurobiology to clinical applications.  Cell Mol Neurobiol. 1995;  15 675-687
  • 4 Eynott P R, Groneberg D A, Caramori G. et al . Role of nitric oxide in allergic inflammation and bronchial hyperresponsiveness.  Eur J Pharmacol. 2002;  452 123-133
  • 5 Eynott P R, Paavolainen N, Groneberg D A. et al . Role of nitric oxide in chronic allergen-induced airway cell proliferation and inflammation.  J Pharmacol Exp Ther. 2003;  304 22-29
  • 6 Joos G F, Pauwels R A. Tachykinin receptor antagonists: potential in airways diseases.  Curr Opin Pharmacol. 2001;  1 235-241
  • 7 Barnes P J, Chung K F, Page C P. Inflammatory mediators of asthma: an update.  Pharmacol Rev. 1998;  50 515-596
  • 8 Richardson J D, Vasko M R. Cellular mechanisms of neurogenic inflammation.  J Pharmacol Exp Ther. 2002;  302 839-845
  • 9 Velden V H van der, Hulsmann A R. Autonomic innervation of human airways: structure, function, and pathophysiology in asthma.  Neuroimmunomodulation. 1999;  6 145-159
  • 10 Widdicombe J G. Autonomic regulation. i-NANC/e-NANC.  Am J Respir Crit Care Med. 1998;  158 S171-175
  • 11 Linden A. NANC neural control of airway smooth muscle tone.  Gen Pharmacol. 1996;  27 1109-1121
  • 12 Widdicombe J G. Overview of neural pathways in allergy and asthma.  Pulm Pharmacol Ther. 2003;  16 23-30
  • 13 Belvisi M G. Sensory nerves and airway inflammation: role of A delta and C-fibres.  Pulm Pharmacol Ther. 2003;  16 1-7
  • 14 Groneberg D A, Springer J, Fischer A. Vasoactive intestinal polypeptide as mediator of asthma.  Pulm Pharmacol Ther. 2001;  14 391-401
  • 15 Bedoui S, Kawamura N, Straub R H. et al . Relevance of neuropeptide Y for the neuroimmune crosstalk.  J Neuroimmunol. 2003;  134 1-11
  • 16 Fischer A, Folkerts G, Geppetti P. et al . Mediators of asthma: nitric oxide.  Pulm Pharmacol Ther. 2002;  15 73-81
  • 17 Groneberg D A, Fischer A. Endogenous opioids as mediators of asthma.  Pulm Pharmacol Ther. 2001;  14 383-389
  • 18 Goetzl E J, Voice J K, Shen S. et al . Enhanced delayed-type hypersensitivity and diminished immediate-type hypersensitivity in mice lacking the inducible VPAC(2) receptor for vasoactive intestinal peptide.  Proc Natl Acad Sci USA. 2001;  98 13 854-13 859
  • 19 Fischer T C, Hartmann P, Loser C. et al . Abundant expression of vasoactive intestinal polypeptide receptor VPAC2 mRNA in human skin.  J Invest Dermatol. 2001;  117 754-756
  • 20 Said S I, Mutt V. A peptide fraction from lung tissue with prolonged peripheral vasodilator activity.  Scand J Clin Lab Invest Suppl. 1969;  107 51-56
  • 21 Said S I, Mutt V. Potent peripheral and splanchnic vasodilator peptide from normal gut.  Nature. 1970;  225 863-864
  • 22 Said S I, Mutt V. Polypeptide with broad biological activity: isolation from small intestine.  Science. 1970;  169 1217-1218
  • 23 Gozes I, Nakai H, Byers M. et al . Sequential expression in the nervous system of c-myb and VIP genes, located in human chromosomal region 6q24.  Somat Cell Mol Genet. 1987;  13 305-313
  • 24 Gozes I, Brenneman D E. VIP: molecular biology and neurobiological function.  Mol Neurobiol. 1989;  3 201-236
  • 25 Lilly C M, Drazen J M, Shore S A. Peptidase modulation of airway effects of neuropeptides.  Proc Soc Exp Biol Med. 1993;  203 388-404
  • 26 Hachisu M, Hiranuma T, Tani S. et al . Enzymatic degradation of helodermin and vasoactive intestinal polypeptide.  J Pharmacobiodyn. 1991;  14 126-131
  • 27 Lundberg J M, Fahrenkrug J, Hokfelt T. et al . Co-existence of peptide HI (PHI) and VIP in nerves regulating blood flow and bronchial smooth muscle tone in various mammals including man.  Peptides. 1984;  5 593-606
  • 28 Baraniuk J N, Lundgren J D, Okayama M. et al . Vasoactive intestinal peptide in human nasal mucosa.  J Clin Invest. 1990;  86 825-831
  • 29 Bowden J J, Gibbins I L. Vasoactive intestinal peptide and neuropeptide Y coexist in non-noradrenergic sympathetic neurons to guinea pig trachea.  J Auton Nerv Syst. 1992;  38 1-19
  • 30 Fischer A, Hoffmann B. Nitric oxide synthase in neurons and nerve fibers of lower airways and in vagal sensory ganglia of man. Correlation with neuropeptides.  Am J Respir Crit Care Med. 1996;  154 209-216
  • 31 Carstairs J R, Barnes P J. Visualization of vasoactive intestinal peptide receptors in human and guinea pig lung.  J Pharmacol Exp Ther. 1986;  239 249-255
  • 32 Ishihara T, Shigemoto R, Mori K. et al . Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide.  Neuron. 1992;  8 811-819
  • 33 Lutz E M, Sheward W J, West K M. et al . The VIP2 receptor: molecular characterisation of a cDNA encoding a novel receptor for vasoactive intestinal peptide.  FEBS Lett. 1993;  334 3-8
  • 34 Ciccarelli E, Vilardaga J P, de Neef P. et al . Properties of the VIP-PACAP type II receptor stably expressed in CHO cells.  Regul Pept. 1994;  54 397-407
  • 35 Rawlings S R, Piuz I, Schlegel W. et al . Differential expression of pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal polypeptide receptor subtypes in clonal pituitary somatotrophs and gonadotrophs.  Endocrinology. 1995;  136 2088-2098
  • 36 Harmar A J, Arimura A, Gozes I. et al . International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide.  Pharmacol Rev. 1998;  50 265-270
  • 37 Couvineau A, Rouyer-Fessard C, Darmoul D. et al . Human intestinal VIP receptor: cloning and functional expression of two cDNA encoding proteins with different N-terminal domains.  Biochem Biophys Res Commun. 1994;  200 769-776
  • 38 Couvineau A, Rouyer-Fessard C, Maoret J J. et al . Vasoactive intestinal peptide (VIP)1 receptor. Three nonadjacent amino acids are responsible for species selectivity with respect to recognition of peptide histidine isoleucineamide.  J Biol Chem. 1996;  271 12 795-12 800
  • 39 Sreedharan S P, Patel D R, Huang J X. et al . Cloning and functional expression of a human neuroendocrine vasoactive intestinal peptide receptor.  Biochem Biophys Res Commun. 1993;  193 546-553
  • 40 Gourlet P, Vandermeers A, Vertongen P. et al . Development of high affinity selective VIP1 receptor agonists.  Peptides. 1997;  18 1539-1545
  • 41 Gourlet P, de Neef P, Cnudde J. et al . In vitro properties of a high affinity selective antagonist of the VIP1 receptor.  Peptides. 1997;  18 1555-1560
  • 42 Inagaki N, Yoshida H, Mizuta M. et al . Cloning and functional characterization of a third pituitary adenylate cyclase-activating polypeptide receptor subtype expressed in insulin-secreting cells.  Proc Natl Acad Sci U S A. 1994;  91 2679-2683
  • 43 Usdin T B, Bonner T I, Mezey E. Two receptors for vasoactive intestinal polypeptide with similar specificity and complementary distributions.  Endocrinology. 1994;  135 2662-2680
  • 44 Svoboda M, Tastenoy M, van Rampelbergh J. et al . Molecular cloning and functional characterization of a human VIP receptor from SUP-T1 lymphoblasts.  Biochem Biophys Res Commun. 1994;  205 1617-1624
  • 45 Wei Y, Mojsov S. Tissue specific expression of different human receptor types for pituitary adenylate cyclase activating polypeptide and vasoactive intestinal polypeptide: implications for their role in human physiology.  J Neuroendocrinol. 1996;  8 811-817
  • 46 Gourlet P, Vertongen P, Vandermeers A. et al . The long-acting vasoactive intestinal polypeptide agonist RO 25 - 1553 is highly selective of the VIP2 receptor subclass.  Peptides. 1997;  18 403-408
  • 47 O'Donnell M, Garippa R J, Rinaldi N. et al . Ro 25 - 1553: a novel, long-acting vasoactive intestinal peptide agonist. Part I: In vitro and in vivo bronchodilator studies.  J Pharmacol Exp Ther. 1994;  270 1282-1288
  • 48 O'Donnell M, Garippa R J, Rinaldi N. et al . Ro 25 - 1553: a novel, long-acting vasoactive intestinal peptide agonist. Part II: Effect on in vitro and in vivo models of pulmonary anaphylaxis.  J Pharmacol Exp Ther. 1994;  270 1289-1294
  • 49 Tang H, Welton A, Ganea D. Neuropeptide regulation of cytokine expression: effects of VIP and Ro 25 - 1553.  J Interferon Cytokine Res. 1995;  15 993-1003
  • 50 Xia M, Sreedharan S P, Bolin D R. et al . Novel cyclic peptide agonist of high potency and selectivity for the type II vasoactive intestinal peptide receptor.  J Pharmacol Exp Ther. 1997;  281 629-633
  • 51 Fischer T C, Dinh Q T, Peiser C. et al . Simultaneous detection of receptor mRNA and ligand protein in human skin tissues.  J Cutan Pathol. 2002;  29 65-71
  • 52 Groneberg D A, Hartmann P, Dinh Q T. et al . Expression and distribution of vasoactive intestinal polypeptide receptor VPAC(2) mRNA in human airways.  Lab Invest. 2001;  81 749-755
  • 53 Busto R, Prieto J C, Bodega G. et al . Immunohistochemical localization and distribution of VIP/PACAP receptors in human lung.  Peptides. 2000;  21 265-269
  • 54 Peiser C, Springer J, Groneberg D A. et al . Leptin receptor expression in nodose ganglion cells projecting to the rat gastric fundus.  Neurosci Lett. 2002;  320 41-44
  • 55 Fischer A, Kummer W, Couraud J Y. et al . Immunohistochemical localization of receptors for vasoactive intestinal peptide and substance P in human trachea.  Lab Invest. 1992;  67 387-393
  • 56 Voice J K, Dorsam G, Lee H. et al . Allergic diathesis in transgenic mice with constitutive T cell expression of inducible vasoactive intestinal peptide receptor.  FASEB J. 2001;  15 2489-2496
  • 57 Palmer J B, Cuss F M, Barnes P J. VIP and PHM and their role in nonadrenergic inhibitory responses in isolated human airways.  J Appl Physiol. 1986;  61 1322-1328
  • 58 Altiere R J, Diamond L. Comparison of vasoactive intestinal peptide and isoproterenol relaxant effects in isolated cat airways.  J Appl Physiol. 1984;  56 986-992
  • 59 Hand J M, Laravuso R B, Will J A. Relaxation of isolated guinea pig trachea, bronchi and pulmonary arteries produced by vasoactive intestinal peptide (VIP).  Eur J Pharmacol. 1984;  98 279-284
  • 60 Saga T, Said S I. Vasoactive intestinal peptide relaxes isolated strips of human bronchus, pulmonary artery, and lung parenchyma.  Trans Assoc Am Physicians. 1984;  97 304-310
  • 61 Diamond L, Szarek J L, Gillespie M N. et al . In vivo bronchodilator activity of vasoactive intestinal peptide in the cat.  Am Rev Respir Dis. 1983;  128 827-832
  • 62 Hamasaki Y, Saga T, Mojarad M. et al . Vasoactive intestinal peptide counteracts leukotriene D4-induced contractions of guinea pig trachea, lung, and pulmonary artery.  Trans Assoc Am Physicians. 1983;  96 406-411
  • 63 Boomsma J D, Said S I. The role of neuropeptides in asthma.  Chest. 1992;  101 389S-392S
  • 64 Cox C P, Lerner M R, Wells J J. et al . Inhaled vasoactive intestinal peptide (VIP) prevents bronchoconstriction induced by inhaled histamine.  Am Rev Respir Dis. 1983;  127 A249
  • 65 Bundgaard A, Enehjelm S D, Aggestrup S. Pretreatment of exercise-induced asthma with inhaled vasoactive intestinal peptide (VIP).  Eur J Respir Dis Suppl. 1983;  128 427-429
  • 66 Altiere R J, Kung M, Diamond L. Comparative effects of inhaled isoproterenol and vasoactive intestinal peptide on histamine-induced bronchoconstriction in human subjects.  Chest. 1984;  86 153-154
  • 67 Morice A, Unwin R J, Sever P S. Vasoactive intestinal peptide causes bronchodilatation and protects against histamine-induced bronchoconstriction in asthmatic subjects.  Lancet. 1983;  2 1225-1227
  • 68 Groneberg D A, Nickolaus M, Springer J. et al . Localization of the peptide transporter PEPT2 in the lung: implications for pulmonary oligopeptide uptake.  Am J Pathol. 2001;  158 707-714
  • 69 Groneberg D A, Eynott P R, Doring F. et al . Distribution and function of the peptide transporter PEPT2 in normal and cystic fibrosis human lung.  Thorax. 2002;  57 55-60
  • 70 Groneberg D A. Expression, Lokalisation und funktionelle Aspekte des Peptidtransporters PEPT2 im gesunden Atemtrakt und bei Mukoviszidose.  Pneumologie. 2003;  57 104-105
  • 71 Groneberg D A, Doring F, Nickolaus M. et al . Expression of PEPT2 peptide transporter mRNA and protein in glial cells of rat dorsal root ganglia.  Neurosci Lett. 2001;  304 181-184
  • 72 Sharaf H, Said S. I. Tracheal relaxant response to vasoactive intestinal peptide (VIP): influence of airway epithelium and peptidases (abstract).  FASEB J. 1993;  7 A686
  • 73 Bolin D R, Cottrell J, Garippa R. et al . Structure-activity studies of vasoactive intestinal peptide (VIP): cyclic disulfide analogs.  Int J Pept Protein Res. 1993;  41 124-132
  • 74 Ito O, Tachibana S. Vasoactive intestinal polypeptide precursors have highly potent bronchodilatory activity.  Peptides. 1991;  12 131-137
  • 75 Schmidt D T, Ruhlmann E, Waldeck B. et al . The effect of the vasoactive intestinal polypeptide agonist Ro 25 - 1553 on induced tone in isolated human airways and pulmonary artery.  Naunyn Schmiedebergs Arch Pharmacol. 2001;  364 314-320
  • 76 Lung M A, Widdicombe J G. Lung reflexes and nasal vascular resistance in the anaesthetized dog.  J Physiol (Lond). 1987;  386 465-474
  • 77 Lundberg J M, Anggard A, Emson P. et al . Vasoactive intestinal polypeptide and cholinergic mechanisms in cat nasal mucosa: studies on choline acetyltransferase and release of vasoactive intestinal polypeptide.  Proc Natl Acad Sci U S A. 1981;  78 5255-5259
  • 78 Laitinen L A, Laitinen A, Salonen R O. et al . Vascular actions of airway neuropeptides.  Am Rev Respir Dis. 1987;  136 S59-64
  • 79 Hamasaki Y, Mojarad M, Said S I. Relaxant action of VIP on cat pulmonary artery: comparison with acetylcholine, isoproterenol, and PGE1.  J Appl Physiol. 1983;  54 1607-1611
  • 80 Nandiwada P A, Kadowitz P J, Said S I. et al . Pulmonary vasodilator responses to vasoactive intestinal peptide in the cat.  J Appl Physiol. 1985;  58 1723-1728
  • 81 Obara H, Kusunoki M, Mori M. et al . The effects of various peptides on the isolated pulmonary artery.  Peptides. 1989;  10 241-243
  • 82 Matran R, Alving K, Martling C R. et al . Effects of neuropeptides and capsaicin on tracheobronchial blood flow of the pig.  Acta Physiol Scand. 1989;  135 335-342
  • 83 Greenberg B, Rhoden K, Barnes P J. Relaxant effects of vasoactive intestinal peptide and peptide histidine isoleucine in human and bovine pulmonary arteries.  Blood Vessels. 1987;  24 45-50
  • 84 Barnes P J, Cadieux A, Carstairs J R. et al . Vasoactive intestinal peptide in bovine pulmonary artery: localisation, function and receptor autoradiography.  Br J Pharmacol. 1986;  89 157-162
  • 85 Groneberg D A, Peiser C, Dinh Q T. et al . Distribution of respiratory mucin proteins in human nasal mucosa.  Laryngoscope. 2003;  113 520-524
  • 86 Groneberg D A, Eynott P R, Oates T. et al . Expression of MUC5AC and MUC5B mucins in normal and cystic fibrosis lung.  Respir Med. 2002;  96 81-86
  • 87 Groneberg D A, Eynott P R, Lim S. et al . Expression of respiratory mucins in fatal status asthmaticus and mild asthma.  Histopathology. 2002;  40 367-373
  • 88 Groneberg D A, Wagner U, Chung K F. Mucus and fatal asthma.  Am J Med. 2004;  116 66-67
  • 89 Dey R D, Shannon Jr W A, Said S I. Localization of VIP-immunoreactive nerves in airways and pulmonary vessels of dogs, cat, and human subjects.  Cell Tissue Res. 1981;  220 231-238
  • 90 Peatfield A C, Barnes P J, Bratcher C. et al . Vasoactive intestinal peptide stimulates tracheal submucosal gland secretion in ferret.  Am Rev Respir Dis. 1983;  128 89-93
  • 91 Wagner U, Bredenbroker D, Storm B. et al . Effects of VIP and related peptides on airway mucus secretion from isolated rat trachea.  Peptides. 1998;  19 241-245
  • 92 Webber S E, Widdicombe J G. The effect of vasoactive intestinal peptide on smooth muscle tone and mucus secretion from the ferret trachea.  Br J Pharmacol. 1987;  91 139-148
  • 93 Shimura S, Sasaki T, Ikeda K. et al . VIP augments cholinergic-induced glycoconjugate secretion in tracheal submucosal glands.  J Appl Physiol. 1988;  65 2537-2544
  • 94 Nathanson I, Widdicombe J H, Barnes P J. Effect of vasoactive intestinal peptide on ion transport across dog tracheal epithelium.  J Appl Physiol. 1983;  55 1844-1848
  • 95 Richardson P S, Webber S E. The control of mucous secretion in the airways by peptidergic mechanisms.  Am Rev Respir Dis. 1987;  136 S72-76
  • 96 Sakai N, Tamaoki J, Kobayashi K. et al . Vasoactive intestinal peptide stimulates ciliary motility in rabbit tracheal epithelium: modulation by neutral endopeptidase.  Regul Pept. 1991;  34 33-41
  • 97 Coles S J, Said S I, Reid L M. Inhibition by vasoactive intestinal peptide of glycoconjugate and lysozyme secretion by human airways in vitro.  Am Rev Respir Dis. 1981;  124 531-536
  • 98 Goetzl E J, Pankhaniya R R, Gaufo G O. et al . Selectivity of effects of vasoactive intestinal peptide on macrophages and lymphocytes in compartmental immune responses.  Ann N Y Acad Sci. 1998;  840 540-550
  • 99 Said S I, Dickman K G. Pathways of inflammation and cell death in the lung: modulation by vasoactive intestinal peptide.  Regul Pept. 2000;  93 21-29
  • 100 Nio D A, Moylan R N, Roche J K. Modulation of T lymphocyte function by neuropeptides. Evidence for their role as local immunoregulatory elements.  J Immunol. 1993;  150 5281-5288
  • 101 Undem B J, Dick E C, Buckner C K. Inhibition by vasoactive intestinal peptide of antigen-induced histamine release from guinea-pig minced lung.  Eur J Pharmacol. 1983;  88 247-250
  • 102 O'Dorisio M S, Shannon B T, Fleshman D J. et al . Identification of high affinity receptors for vasoactive intestinal peptide on human lymphocytes of B cell lineage.  J Immunol. 1989;  142 3533-3536
  • 103 Berisha H, Foda H, Sakakibara H. et al . Vasoactive intestinal peptide prevents lung injury due to xanthine/xanthine oxidase.  Am J Physiol. 1990;  259 L151-155
  • 104 Misra B R, Misra H P. Vasoactive intestinal peptide, a singlet oxygen quencher.  J Biol Chem. 1990;  265 15 371-15 374
  • 105 Leceta J, Gomariz R P, Martinez C. et al . Receptors and transcriptional factors involved in the anti-inflammatory activity of VIP and PACAP.  Ann N Y Acad Sci. 2000;  921 92-102
  • 106 Delgado M, Abad C, Martinez C. et al . Vasoactive intestinal peptide prevents experimental arthritis by downregulating both autoimmune and inflammatory components of the disease.  Nat Med. 2001;  7 563-568
  • 107 Groneberg D A, Welker P, Fischer T C. et al . Down-regulation of vasoactive intestinal polypeptide receptor expression in atopic dermatitis.  J Allergy Clin Immunol. 2003;  111 1099-1105
  • 108 Ollerenshaw S, Jarvis D, Woolcock A. et al . Absence of immunoreactive vasoactive intestinal polypeptide in tissue from the lungs of patients with asthma.  N Engl J Med. 1989;  320 1244-1248
  • 109 Howarth P H, Djukanovic R, Wilson J W. et al . Mucosal nerves in endobronchial biopsies in asthma and non-asthma.  Int Arch Allergy Appl Immunol. 1991;  94 330-333
  • 110 Howarth P H, Springall D R, Redington A E. et al . Neuropeptide-containing nerves in endobronchial biopsies from asthmatic and nonasthmatic subjects.  Am J Respir Cell Mol Biol. 1995;  13 288-296
  • 111 Chanez P, Springall D, Vignola A M. et al . Bronchial mucosal immunoreactivity of sensory neuropeptides in severe airway diseases.  Am J Respir Crit Care Med. 1998;  158 985-990
  • 112 Kaltreider H B, Ichikawa S, Byrd P K. et al . Upregulation of neuropeptides and neuropeptide receptors in a murine model of immune inflammation in lung parenchyma.  Am J Respir Cell Mol Biol. 1997;  16 133-144
  • 113 Barnes P J. Vasoactive intestinal peptide and asthma.  N Engl J Med. 1989;  321 1128-1129
  • 114 Wenzel S E, Fowler A Ad, Schwartz L B. Activation of pulmonary mast cells by bronchoalveolar allergen challenge. In vivo release of histamine and tryptase in atopic subjects with and without asthma.  Am Rev Respir Dis. 1988;  137 1002-1008
  • 115 Paul S, Said S I, Thompson A B. et al . Characterization of autoantibodies to vasoactive intestinal peptide in asthma.  J Neuroimmunol. 1989;  23 133-142
  • 116 Ohzeki T, Ishitani N, Hanaki K. et al . Responses of plasma vasoactive intestinal polypeptide to methacholine and exercise loading in children and adolescents with bronchial asthma.  Pediatr Allergy Immunol. 1993;  4 26-29
  • 117 Cardell L O, Uddman R, Edvinsson L. Low plasma concentrations of VIP and elevated levels of other neuropeptides during exacerbations of asthma.  Eur Respir J. 1994;  7 2169-2173
  • 118 Palmer J B, Cuss F M, Warren J B. et al . Effect of infused vasoactive intestinal peptide on airway function in normal subjects.  Thorax. 1986;  41 663-666
  • 119 Barnes P J, Dixon C M. The effect of inhaled vasoactive intestinal peptide on bronchial reactivity to histamine in humans.  Am Rev Respir Dis. 1984;  130 162-166
  • 120 Linden A, Hansson L, Andersson A. et al . Bronchodilation by an inhaled VPAC(2) receptor agonist in patients with stable asthma.  Thorax. 2003;  58 217-221
  • 121 Runo J R, Loyd J E. Primary pulmonary hypertension.  Lancet. 2003;  361 1533-1544
  • 122 Olschewski H, Ghofrani A, Wiedemann R. et al . Pulmonaler Hochdruck.  Internist (Berl). 2002;  43 1498, 1501-1509
  • 123 Olschewski H, Seeger W. Behandlung der Pulmonal Arteriellen Hypertonie.  Pneumologie. 2000;  54 222-224
  • 124 Ghofrani H A, Olschewski H, Seeger W. et al . Sildenafil zur Therapie der schweren pulmonalen Hypertonie und des beginnenden Rechtsherzversagens.  Pneumologie. 2002;  56 665-672
  • 125 Ghofrani H A, Rose F, Schermuly R T. et al . Oral sildenafil as long-term adjunct therapy to inhaled iloprost in severe pulmonary arterial hypertension.  J Am Coll Cardiol. 2003;  42 158-164
  • 126 Rich S, Kaufmann E, Levy P S. The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension.  N Engl J Med. 1992;  327 76-81
  • 127 Keith I M. The role of endogenous lung neuropeptides in regulation of the pulmonary circulation.  Physiol Res. 2000;  49 519-537
  • 128 Petkov V, Mosgoeller W, Ziesche R. et al . Vasoactive intestinal peptide as a new drug for treatment of primary pulmonary hypertension.  J Clin Invest. 2003;  111 1339-1346
  • 129 Jones A S. Non-allergic perennial rhinitis.  Biomed Pharmacother. 1988;  42 499-503
  • 130 Groneberg D A, Heppt W, Cryer A. et al . Toxic rhinitis-induced changes of human nasal mucosa innervation.  Toxicol Pathol. 2003;  31 326-331
  • 131 Heppt W, Peiser C, Cryer A. et al . Innervation of human nasal mucosa in environmentally triggered hyperreflectoric rhinitis.  J Occup Environ Med. 2002;  44 924-929
  • 132 Groneberg D A, Heppt W, Welker P. et al . Aspirin-sensitive rhinitis associated changes in upper airway innervation.  Eur Respir J. 2003;  22 986-991

Dr. med. David A. Groneberg

Klinische Forschergruppe Allergologie, Charité - Universitätsmedizin Berlin, Freie Universität Berlin & Humboldt-Universität zu Berlin

Augustenburger Platz 1

13353 Berlin

Email: david.groneberg@charite.de