Fortschr Neurol Psychiatr 2004; 72(8): 435-445
DOI: 10.1055/s-2004-818398
Übersicht
© Georg Thieme Verlag Stuttgart · New York

Depression und moderne Bildgebung

Eine Übersicht des aktuellen Forschungsstandes zur Anwendung bildgebender Verfahren bei depressiven StörungenDepression and Modern NeuroimagingA Review on Current Research of Neuroimaging Approaches in Depressive DisordersC.  Vollmert1, 2 , H.  Tost1 , S.  Brassen1, 2 , A.  Jatzko1, 2 , D.  F.  Braus1, 2
  • 1NMR-Forschung und Klinik für Psychiatrie und Psychotherapie, Zentralinstitut für Seelische Gesundheit, Mannheim
  • 2NeuroImage Nord - Psychiatrie, Universität Hamburg
Further Information

Publication History

Publication Date:
11 August 2004 (online)

Zusammenfassung

Die moderne Bildgebung in Form von PET, SPECT, MR-Volumetrie, funktioneller Kernspintomographie und MR-Spektroskopie hat die Erforschung der Ätiologie, Pathogenese und Therapiemöglichkeiten depressiver Störungen nachhaltig bereichert, wie nachfolgende Übersicht zum aktuellen Forschungsstand verdeutlichen soll. In Einklang mit den morphologischen Befunden, die auf eine relativ abgrenzbare Verteilung von Auffälligkeiten im Bereich emotional relevanter Regelkreise des Gehirns bei depressiven Störungen hinweisen, fokussieren auch die Ergebnisse funktioneller Studien auf Veränderungen der Basalganglien, des Frontalhirns sowie des limbischen Systems mit der Hippokampus-Amygdala-Formation. Wird die Verarbeitung emotional relevanter Reize betrachtet, zeigen depressive Patienten im Bereich des Frontallappens und der Amygdala ein abweichendes Aktivierungsverhalten. Auch unabhängig von der emotionalen Stimulusqualität konnten in eigener Untersuchung an einer Subgruppe Auffälligkeiten in der Reizverarbeitung bei depressiven Patienten aufgezeigt werden, insbesondere posterior-parietal und präfrontal. Affektive Modulation beim Gesunden korreliert mit der geordneten Interaktion ventral-limbischer und dorsal-neokortikaler Regionen des Gehirns, die bei depressiven Störungen in Dysbalance gelangen. Zukünftige viel versprechende Anwendungsgebiete der modernen Bildgebung zielen auf eine Identifikation valider neurofunktioneller Subgruppen der heterogenen affektiven Störungen mit der Ermöglichung entsprechend angepasster effizienter Behandlungsstrategien.

Abstract

Modern neuroimaging like PET, SPECT, MR-Volumetry, functional MRI and MR-Spectroscopy has effectively advanced research on aetiology, pathogenesis and therapy options of depressive disorders. This review highlights the status of current research on this topic. Consistent with morphological findings, which report alterations in regions of emotionally relevant networks of the brain in depressive disorders, findings of functional studies point to changes in the basal ganglia, the frontal cortex and the limbic system involving the hippocampus and the amygdala. During processing of emotional cues depressive patients show different activation patterns in the regions of the frontal lobe and the amygdala. In our study of a subgroup we were also able to show deficits in processing cues independently from the emotional quality of the stimulus - especially in posterior-parietal and prefrontal areas. In healthy subjects affective modulation correlates with an ordered interaction of ventral-limbic and dorsal-neocortical regions of the brain, which become unbalanced in depressive disorders. In the future, modern neuroimaging will open promising fields of research, which aim at the identification of valid neurofunctional subgroups of the heterogeneous affective disorders and the development of more adjusted and efficient therapy strategies.

Literatur

  • 1 Braus D F. Wahrnehmen zeitlicher Relationen, neuronale Synchronisation und die Schizophrenien.  Fortschr Neurol Psychiatr. 2002;  70 591-600
  • 2 Martin J V, Edwards E, Johnson J O, Henn F A. Monoamine receptors in an animal model of affective disorder.  J Neurochem. 1990;  55 1142-1148
  • 3 Edwards E, Harkins K, Wright G, Henn F. Modulation of [3H]paroxetine binding to the 5-hydroxytryptamine uptake site in an animal model of depression.  J Neurochem. 1991;  56 1581-1586
  • 4 Ichimiya T, Suhara T, Sudo Y, Okubo Y, Nakayama K, Nankai M, Inoue M, Yasuno F, Takano A, Maeda J, Shibuya H. Serotonin transporter binding in patients with mood disorders: a PET study with [11C](+)McN5652.  Biol Psychiatry. 2002;  51 715-722
  • 5 Meyer J H, Wilson A A, Ginovart N, Goulding V, Hussey D, Hood K, Houle S. Occupancy of serotonin transporters by paroxetine and citalopram during treatment of depression: a [(11)C]DASB PET imaging study.  Am J Psychiatry. 2001;  158 1843-1849
  • 6 Meyer J H, McMain S, Kennedy S H, Korman L, Brown G M, DaSilva J N, Wilson A A, Blak T, Eynan-Harvey R, Goulding V S, Houle S, Links P. Dysfunctional attitudes and 5-HT2 receptors during depression and self- harm.  Am J Psychiatry. 2003;  160 90-99
  • 7 Nestler E J, Barrot M, DiLeone R J, Eisch A J, Gold S J, Monteggia L M. Neurobiology of depression.  Neuron. 2002;  34 13-25
  • 8 Yehuda R, Boisoneau D, Mason J W, Giller E L. Glucocorticoid receptor number and cortisol excretion in mood, anxiety, and psychotic disorders.  Biol Psychiatry. 1993;  34 18-25
  • 9 Yehuda R, Teicher M H, Trestman R L, Levengood R A, Siever L J. Cortisol regulation in posttraumatic stress disorder and major depression: a chronobiological analysis.  Biol Psychiatry. 1996;  40 79-88
  • 10 Duman R S, Heninger G R, Nestler E J. A molecular and cellular theory of depression.  Arch Gen Psychiatry. 1997;  54 597-606
  • 11 Duman R S, Malberg J, Nakagawa S, D'Sa C. Neuronal plasticity and survival in mood disorders.  Biol Psychiatry. 2000;  48 732-739
  • 12 Manji H K, Drevets W C, Charney D S. The cellular neurobiology of depression.  Nat Med. 2001;  7 541-547
  • 13 Harrison P J. The neuropathology of primary mood disorder.  Brain. 2002;  125 1428-1449
  • 14 Rajkowska G. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells.  Biol Psychiatry. 2000;  48 766-777
  • 15 Sapolsky R M. The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death.  Biol Psychiatry. 2000;  48 755-765
  • 16 Sapolsky R M. Depression, antidepressants, and the shrinking hippocampus.  Proc Natl Acad Sci USA. 2001;  98 12 320-12 322
  • 17 Sapolsky R M. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders.  Arch Gen Psychiatry. 2000;  57 925-935
  • 18 Czéh B, Michaelis T, Watanabe T, Frahm J, Biurrun G de, Kampen M van, Bartolomucci A, Fuchs E. Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine.  Proc Natl Acad Sci USA. 2001;  98 12 796-12 801
  • 19 Smith M A, Makino S, Kvetnansky R, Post R M. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus.  J Neurosci. 1995;  15 1768-1777
  • 20 Gilbertson M W, Shenton M E, Ciszewski A, Kasai K, Lasko N B, Orr S P, Pitman R K. Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma.  Nat Neurosci. 2002;  5 1242-1247
  • 21 Sheline Y I. 3D MRI studies of neuroanatomic changes in unipolar major depression: the role of stress and medical comorbidity.  Biol Psychiatry. 2000;  48 791-800
  • 22 Schmitt A, Weber-Fahr W, Jatzko A, Tost H, Henn F A, Braus D F. Aktueller Überblick über strukturelle Magnetresonanztomographie bei Schizophrenie.  Fortschr Neurol Psychiatr. 2001;  69 105-115
  • 23 Coffey C E, Wilkinson W E, Weiner R D, Parashos I A, Djang W T, Webb M C, Figiel G S, Spritzer C E. Quantitative cerebral anatomy in depression. A controlled magnetic resonance imaging study.  Arch Gen Psychiatry. 1993;  50 7-16
  • 24 Kumar A, Bilker W, Jin Z, Udupa J. Atrophy and high intensity lesions: complementary neurobiological mechanisms in late-life major depression.  Neuropsychopharmacology. 2000;  22 264-274
  • 25 Salokangas R K, Cannon T, Erp T van, Ilonen T, Taiminen T, Karlsson H, Lauerma H, Leinonen K M, Wallenius E, Kaljonen A, Syvälahti E, Vilkman H, Alanen A, Hietala J. Structural magnetic resonance imaging in patients with first-episode schizophrenia, psychotic and severe non-psychotic depression and healthy controls. Results of the schizophrenia and affective psychoses (SAP) project.  Br J Psychiatry Suppl. 2002;  43 s58-65
  • 26 O'Brien J, Desmond P, Ames D, Schweitzer I, Harrigan S, Tress B. A magnetic resonance imaging study of white matter lesions in depression and Alzheimer’s disease.  Br J Psychiatry. 1996;  168 477-485
  • 27 Oda K, Okubo Y, Ishida R, Murata Y, Ohta K, Matsuda T, Matsushima E, Ichimiya T, Suhara T, Shibuya H, Nishikawa T. Regional cerebral blood flow in depressed patients with white matter magnetic resonance hyperintensity.  Biol Psychiatry. 2003;  53 150-156
  • 28 Thomas A J, O'Brien J T, Davis S, Ballard C, Barber R, Kalaria R N, Perry R H. Ischemic basis for deep white matter hyperintensities in major depression: a neuropathological study.  Arch Gen Psychiatry. 2002;  59 785-792
  • 29 Glassman A H, Shapiro P A. Depression and the course of coronary artery disease.  Am J Psychiatry. 1998;  155 4-11
  • 30 Deuschle M, Lederbogen F. Depression und koronare Herzerkrankung: pathogenetische Faktoren vor dem Hintergrund des Stresskonzeptes.  Fortschr Neurol Psychiatr. 2002;  70 268-275
  • 31 Bremner J D, Vythilingam M, Vermetten E, Nazeer A, Adil J, Khan S, Staib L H, Charney D S. Reduced volume of orbitofrontal cortex in major depression.  Biol Psychiatry. 2002;  51 273-279
  • 32 Steingard R J, Renshaw P F, Hennen J, Lenox M, Cintron C B, Young A D, Connor D F, Au T H, Yurgelun-Todd D. Smaller frontal lobe white matter volumes in depressed adolescents.  Biol Psychiatry. 2002;  52 413-417
  • 33 Ahearn E P, Jamison K R, Steffens D C, Cassidy F, Provenzale J M, Lehman A, Weisler R H, Carroll B J, Krishnan K R. MRI correlates of suicide attempt history in unipolar depression.  Biol Psychiatry. 2001;  50 266-270
  • 34 Bell-McGinty S, Butters M A, Meltzer C C, Greer P J, Reynolds 3rd C F, Becker J T. Brain morphometric abnormalities in geriatric depression: long-term neurobiological effects of illness duration.  Am J Psychiatry. 2002;  159 1424-1427
  • 35 Bremner J D, Narayan M, Anderson E R, Staib L H, Miller H L, Charney D S. Hippocampal volume reduction in major depression.  Am J Psychiatry. 2000;  157 115-118
  • 36 Mervaala E, Fohr J, Kononen M, Valkonen-Korhonen M, Vainio P, Partanen K, Partanen J, Tiihonen J, Viinamaki H, Karjalainen A K, Lehtonen J. Quantitative MRI of the hippocampus and amygdala in severe depression.  Psychol Med. 2000;  30 117-125
  • 37 Posener J A, Wang L, Price J L, Gado M H, Province M A, Miller M I, Babb C M, Csernansky J G. High-dimensional mapping of the hippocampus in depression.  Am J Psychiatry. 2003;  160 83-89
  • 38 Sheline Y I, Wang P W, Gado M H, Csernansky J G, Vannier M W. Hippocampal atrophy in recurrent major depression.  Proc Natl Acad Sci USA. 1996;  93 3908-3913
  • 39 Steffens D C, Byrum C E, McQuoid D R, Greenberg D L, Payne M E, Blitchington T F, MacFall J R, Krishnan K R. Hippocampal volume in geriatric depression.  Biol Psychiatry. 2000;  48 301-309
  • 40 Frodl T, Meisenzahl E M, Zetzsche T, Born C, Groll C, Jager M, Leinsinger G, Bottlender R, Hahn K, Moller H J. Hippocampal changes in patients with a first episode of major depression.  Am J Psychiatry. 2002;  159 1112-1118
  • 41 Rusch B D, Abercrombie H C, Oakes T R, Schaefer S M, Davidson R J. Hippocampal morphometry in depressed patients and control subjects: relations to anxiety symptoms.  Biol Psychiatry. 2001;  50 960-964
  • 42 Sheline Y I, Sanghavi M, Mintun M A, Gado M H. Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression.  J Neurosci. 1999;  19 5034-5043
  • 43 Vakili K, Pillay S S, Lafer B, Fava M, Renshaw P F, Bonello-Cintron C M, Yurgelun-Todd D A. Hippocampal volume in primary unipolar major depression: a magnetic resonance imaging study.  Biol Psychiatry. 2000;  47 1087-1090
  • 44 Frodl T, Meisenzahl E, Zetzsche T, Bottlender R, Born C, Groll C, Jäger M, Leinsinger G, Hahn K, Möller H J. Enlargement of the amygdala in patients with a first episode of major depression.  Biol Psychiatry. 2002;  51 708-714
  • 45 Sheline Y I, Gado M H, Price J L. Amygdala core nuclei volumes are decreased in recurrent major depression.  Neuroreport. 1998;  9 2023-2028
  • 46 Tebartz van Elst L, Woermann F G, Lemieux L, Trimble M R. Amygdala enlargement in dysthymia - a volumetric study of patients with temporal lobe epilepsy.  Biol Psychiatry. 1999;  46 1614-1623
  • 47 Tebartz van Elst L, Woermann F, Lemieux L, Trimble M R. Increased amygdala volumes in female and depressed humans. A quantitative magnetic resonance imaging study.  Neurosci Lett. 2000;  281 103-106
  • 48 Gunten A von, Fox N C, Cipolotti L, Ron M A. A volumetric study of hippocampus and amygdala in depressed patients with subjective memory problems.  J Neuropsychiatry Clin Neurosci. 2000;  12 493-498
  • 49 Kato T, Takahashi S, Shioiri T, Murashita J, Hamakawa H, Inubushi T. Reduction of brain phosphocreatine in bipolar II disorder detected by phosphorus-31 magnetic resonance spectroscopy.  J Affect Disord. 1994;  31 125-133
  • 50 Kato T, Shioiri T, Murashita J, Hamakawa H, Takahashi Y, Inubushi T, Takahashi S. Lateralized abnormality of high energy phosphate metabolism in the frontal lobes of patients with bipolar disorder detected by phase-encoded 31P-MRS.  Psychol Med. 1995;  25 557-566
  • 51 Volz H P, Rzanny R, Riehemann S, May S, Hegewald H, Preussler B, Hubner G, Kaiser W A, Sauer H. 31P magnetic resonance spectroscopy in the frontal lobe of major depressed patients.  Eur Arch Psychiatry Clin Neurosci. 1998;  248 289-295
  • 52 Charles H C, Lazeyras F, Krishnan K R, Boyko O B, Payne M, Moore D. Brain choline in depression: in vivo detection of potential pharmacodynamic effects of antidepressant therapy using hydrogen localized spectroscopy.  Prog Neuropsychopharmacol Biol Psychiatry. 1994;  18 1121-1127
  • 53 Ende G, Braus D F, Walter S, Weber-Fahr W, Henn F A. The hippocampus in patients treated with electroconvulsive therapy: a proton magnetic resonance spectroscopic imaging study.  Arch Gen Psychiatry. 2000;  57 937-943
  • 54 Hamakawa H, Kato T, Murashita J, Kato N. Quantitative proton magnetic resonance spectroscopy of the basal ganglia in patients with affective disorders.  Eur Arch Psychiatry Clin Neurosci. 1998;  248 53-58
  • 55 Renshaw P F, Lafer B, Babb S M, Fava M, Stoll A L, Christensen J D, Moore C M, Yurgelun-Todd D A, Bonello C M, Pillay S S, Rothschild A J, Nierenberg A A, Rosenbaum J F, Cohen B M. Basal ganglia choline levels in depression and response to fluoxetine treatment: an in vivo proton magnetic resonance spectroscopy study.  Biol Psychiatry. 1997;  41 837-843
  • 56 Sonawalla S B, Renshaw P F, Moore C M, Alpert J E, Nierenberg A A, Rosenbaum J F, Fava M. Compounds containing cytosolic choline in the basal ganglia: a potential biological marker of true drug response to fluoxetine.  Am J Psychiatry. 1999;  156 1638-1640
  • 57 Obergrießer T, Ende G, Braus D F, Henn F A. Long-term follow-up of MR-detectable brain metabolites in the hippocampus of patients treated with ECT.  J Clin Psychiatry. 2003;  64 775-780
  • 58 Kumar A, Newberg A, Alavi A, Berlin J, Smith R, Reivich M. Regional cerebral glucose metabolism in late-life depression and Alzheimer disease: a preliminary positron emission tomography study.  Proc Natl Acad Sci USA. 1993;  90 7019-7023
  • 59 Abercrombie H C, Schaefer S M, Larson C L, Oakes T R, Lindgren K A, Holden J E, Perlman S B, Turski P A, Krahn D D, Benca R M, Davidson R J. Metabolic rate in the right amygdala predicts negative affect in depressed patients.  Neuroreport. 1998;  9 3301-3307
  • 60 Kennedy S H, Evans K R, Kruger S, Mayberg H S, Meyer J H, McCann S, Arifuzzman A I, Houle S, Vaccarino F J. Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression.  Am J Psychiatry. 2001;  158 899-905
  • 61 Mayberg H S, Brannan S K, Tekell J L, Silva J A, Mahurin R K, McGinnis S, Jerabek P A. Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response.  Biol Psychiatry. 2000;  48 830-843
  • 62 Galynker I I, Cai J, Ongseng F, Finestone H, Dutta E, Serseni D. Hypofrontality and negative symptoms in major depressive disorder.  J Nucl Med. 1998;  39 608-612
  • 63 Bench C J, Friston K J, Brown R G, Scott L C, Frackowiak R S, Dolan R J. The anatomy of melancholia-focal abnormalities of cerebral blood flow in major depression.  Psychol Med. 1992;  22 607-615
  • 64 Curran S M, Murray C M, Beck M van, Dougall N, O'Carroll R E, Austin M P, Ebmeier K P, Goodwin G M. A single photon emission computerised tomography study of regional brain function in elderly patients with major depression and with Alzheimer-type dementia.  Br J Psychiatry. 1993;  163 155-165
  • 65 Kimbrell T A, Ketter T A, George M S, Little J T, Benson B E, Willis M W, Herscovitch P, Post R M. Regional cerebral glucose utilization in patients with a range of severities of unipolar depression.  Biol Psychiatry. 2002;  51 237-252
  • 66 Mayberg H S, Liotti M, Brannan S K, McGinnis S, Mahurin R K, Jerabek P A, Silva J A, Tekell J L, Martin C C, Lancaster J L, Fox P T. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness.  Am J Psychiatry. 1999;  156 675-682
  • 67 Oquendo M A, Placidi G P, Malone K M, Campbell C, Keilp J, Brodsky B, Kegeles L S, Cooper T B, Parsey R V, Heertum R L van, Mann J J. Positron emission tomography of regional brain metabolic responses to a serotonergic challenge and lethality of suicide attempts in major depression.  Arch Gen Psychiatry. 2003;  60 14-22
  • 68 Videbech P, Ravnkilde B, Pedersen T H, Hartvig H, Egander A, Clemmensen K, Rasmussen N A, Andersen F, Gjedde A, Rosenberg R. The Danish PET/depression project: clinical symptoms and cerebral blood flow. A regions-of-interest analysis.  Acta Psychiatr Scand. 2002;  106 35-44
  • 69 Navarro V, Gasto C, Lomena F, Mateos J J, Marcos T, Portella M J. Normalization of frontal cerebral perfusion in remitted elderly major depression: a 12-month follow-up SPECT study.  Neuroimage. 2002;  16 781-787
  • 70 Ho A P, Gillin J C, Buchsbaum M S, Wu J C, Abel L, Bunney Jr W E. Brain glucose metabolism during non-rapid eye movement sleep in major depression. A positron emission tomography study.  Arch Gen Psychiatry. 1996;  53 645-652
  • 71 Mayberg H S, Lewis P J, Regenold W, Wagner Jr H N. Paralimbic hypoperfusion in unipolar depression.  J Nucl Med. 1994;  35 929-934
  • 72 Smith G S, Reynolds 3rd C F, Pollock B, Derbyshire S, Nofzinger E, Dew M A, Houck P R, Milko D, Meltzer C C, Kupfer D J. Cerebral glucose metabolic response to combined total sleep deprivation and antidepressant treatment in geriatric depression.  Am J Psychiatry. 1999;  156 683-689
  • 73 Wu J, Buchsbaum M S, Gillin J C, Tang C, Cadwell S, Wiegand M, Najafi A, Klein E, Hazen K, Bunney Jr W E, Fallon J H, Keator D. Prediction of antidepressant effects of sleep deprivation by metabolic rates in the ventral anterior cingulate and medial prefrontal cortex.  Am J Psychiatry. 1999;  156 1149-1158
  • 74 Habel U, Posse S, Schneider F. Funktionelle Kernspintomographie in der klinischen Psychologie und Psychiatrie.  Fortschr Neurol Psychiatr. 2002;  70 61-70
  • 75 Hariri A R, Mattay V S, Tessitore A, Kolachana B, Fera F, Goldman D, Egan M F, Weinberger D R. Serotonin transporter genetic variation and the response of the human amygdala.  Science. 2002;  297 400-403
  • 76 Canli T, Sivers H, Whitfield S L, Gotlib I H, Gabrieli J D. Amygdala response to happy faces as a function of extraversion.  Science. 2002;  296 2191
  • 77 Liotti M, Mayberg H S, Brannan S K, McGinnis S, Jerabek P, Fox P T. Differential limbic-cortical correlates of sadness and anxiety in healthy subjects: implications for affective disorders.  Biol Psychiatry. 2000;  48 30-42
  • 78 Elliott R, Baker S C, Rogers R D, O'Leary D A, Paykel E S, Frith C D, Dolan R J, Sahakian B J. Prefrontal dysfunction in depressed patients performing a complex planning task: a study using positron emission tomography.  Psychol Med. 1997;  27 931-942
  • 79 George M S, Ketter T A, Parekh P I, Rosinsky N, Ring H A, Pazzaglia P J, Marangell L B, Callahan A M, Post R M. Blunted left cingulate activation in mood disorder subjects during a response interference task (the Stroop).  J Neuropsychiatry Clin Neurosci. 1997;  9 55-63
  • 80 Dunn R T, Kimbrell T A, Ketter T A, Frye M A, Willis M W, Luckenbaugh D A, Póst R M. Principal components of the Beck Depression Inventory and regional cerebral metabolism in unipolar and bipolar depression.  Biol Psychiatry. 2002;  51 387-399
  • 81 Beauregard M, Leroux J M, Bergman S, Arzoumanian Y, Beaudoin G, Bourgouin P, Stip E. The functional neuroanatomy of major depression: an fMRI study using an emotional activation paradigm.  Neuroreport. 1998;  9 3253-3258
  • 82 Elliott R, Rubinsztein J S, Sahakian B J, Dolan R J. The neural basis of mood-congruent processing biases in depression.  Arch Gen Psychiatry. 2002;  59 597-604
  • 83 Davidson R J, Irwin W, Anderle M J, Kalin N H. The neural substrates of affective processing in depressed patients treated with venlafaxine.  Am J Psychiatry. 2003;  160 64-75
  • 84 Liotti M, Mayberg H S, McGinnis S, Brannan S L, Jerabek P. Unmasking disease-specific cerebral blood flow abnormalities: mood challenge in patients with remitted unipolar depression.  Am J Psychiatry. 2002;  159 1830-1840
  • 85 Sheline Y I, Barch D M, Donnelly J M, Ollinger J M, Snyder A Z, Mintun M A. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study.  Biol Psychiatry. 2001;  50 651-658
  • 86 Siegle G J, Steinhauer S R, Thase M E, Stenger V A, Carter C S. Can’t shake that feeling: event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals.  Biol Psychiatry. 2002;  51 693-707
  • 87 Braus D F, Weber-Fahr W, Tost H, Ruf M, Henn F A. Sensory information processing in neuroleptic-naive first-episode schizophrenic patients: a functional magnetic resonance imaging study.  Arch Gen Psychiatry. 2002;  59 696-701
  • 88 Davidson R J, Pizzagalli D, Nitschke J B, Putnam K. Depression: perspectives from affective neuroscience.  Annu Rev Psychol. 2002;  53 545-574
  • 89 Auer D P, Putz B, Kraft E, Lipinski B, Schill J, Holsboer F. Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study.  Biol Psychiatry. 2000;  47 305-313
  • 90 Wu J C, Gillin J C, Buchsbaum M S, Hershey T, Johnson J C, Bunney Jr W E. Effect of sleep deprivation on brain metabolism of depressed patients.  Am J Psychiatry. 1992;  149 538-543
  • 91 Braus D F, Brassen S, Weimer E, Tost H. Funktionelle Kernspintomographie (fMRI) und Psychopharmakaeffekte: eine Standortbestimmung.  Fortschr Neurol Psychiatr. 2003;  71 72-83
  • 92 Brody A L, Saxena S, Stoessel P, Gillies L A, Fairbanks L A, Alborzian S, Phelps M E, Huang S C, Wu H M, Ho M L, Ho M K, Au S C, Maidment K, Baxter Jr L R. Regional brain metabolic changes in patients with major depression treated with either paroxetine or interpersonal therapy: preliminary findings.  Arch Gen Psychiatry. 2001;  58 631-640
  • 93 Mayberg H S, Silva J A, Brannan S K, Tekell J L, Mahurin K, McGinnis S, Jerabek P A. The functional neuroanatomy of the placebo effect.  Am J Psychiatry. 2002;  159 728-737
  • 94 Bench C J, Friston K J, Brown R G, Frackowiak R S, Dolan R J. Regional cerebral blood flow in depression measured by positron emission tomography: the relationship with clinical dimensions.  Psychol Med. 1993;  23 579-590
  • 95 Bremner J D, Innis R B, Salomon R M, Staib L H, Ng C K, Miller H L, Bronen R A, Krystal J H, Duncan J, Rich D, Price L H, Malison R, Dey H, Soufer R, Charney D S. Positron emission tomography measurement of cerebral metabolic correlates of tryptophan depletion-induced depressive relapse.  Arch Gen Psychiatry. 1997;  54 364-374
  • 96 Dolan R J, Bench C J, Brown R G, Scott L C, Frackowiak R S. Neuropsychological dysfunction in depression: the relationship to regional cerebral blood flow.  Psychol Med. 1994;  24 849-857
  • 97 Kegeles L S, Malone K M, Slifstein M, Ellis S P, Xanthopoulos E, Keilp J G, Campbell C, Oquendo M, Heertum R L van, Mann J J. Response of cortical metabolic deficits to serotonergic challenge in familial mood disorders.  Am J Psychiatry. 2003;  160 76-82
  • 98 Bench C J, Frackowiak R S, Dolan R J. Changes in regional cerebral blood flow on recovery from depression.  Psychol Med. 1995;  25 247-261
  • 99 Brody A L, Saxena S, Mandelkern M A, Fairbanks L A, Ho M L, Baxter L R. Brain metabolic changes associated with symptom factor improvement in major depressive disorder.  Biol Psychiatry. 2001;  50 171-178
  • 100 Mayberg H S, Brannan S K, Mahurin R K, Jerabek P A, Brickman J S, Tekell J L, Silva J A, McGinnis S, Glass T G, Martin C C, Fox P T. Cingulate function in depression: a potential predictor of treatment response.  Neuroreport. 1997;  8 1057-1061

Univ.-Prof. Dr. Dieter F. Braus

Universitätsklinikum Hamburg-Eppendorf

Martinistr. 52

20246 Hamburg

Email: d.braus@uke.uni-hamburg.de