Subscribe to RSS
DOI: 10.1055/s-2004-818408
Mechanisch induzierte Apoptose und Nekrose in alveolären Typ-II-Zellen - Beeinflussung durch Captopril und L-Arginin
Apoptosis and Necrosis Induced by Cyclic Mechanical Stretching in Alveolar Type-II-Cells - Influence of Captopril and L-Arginine Deutsche Fassung von: Hammerschmidt, S, Kuhn H, Grasenack T, Gessner C, Wirtz H.Apoptosis and Necrosis Induced by Cyclic Mechanical Stretching in Alveolar Type-II-Cells - Influence of Captopril and L-Arginine.Am J Respir Cell Mol Biol. 2004 Mar; 30 (3): 396-402. Epub 2003 Sep 04. Zitat nur nach dieser OriginalquelleWidmungHerrn Prof. Dr. med. Joachim Schauer zum 65. Geburtstag gewidmet.DanksagungDiese Arbeit wurde von der Deutschen Forschungsgemeinschaft (Ha 3263/1 - 1) unterstützt. Für exzellente technische Assistenz danken wir Frau Konstanze Büttner.Publication History
Publication Date:
20 April 2004 (online)
Zusammenfassung
Hintergrund: Alveoläre Typ-II(ATII)-Zellen sind bei Atmung und Beatmung zyklischen Dehnungen ausgesetzt. Verstärkte Dehnung kann zu akuter Lungenschädigung beitragen. Methode: Diese Arbeit untersucht an ATII-Zellen der Ratte den Effekt dreier Dehnungsmuster (definiert durch Frequenz [min- 1] - Oberflächenzunahme [%]: S40 - 13, S60 - 13, S40 - 30) auf Parameter von Apoptose, Nekrose und Zellmembranintegrität im Vergleich zu statischen Kontrollen. Das Dehnungsmuster S40 - 13 simuliert physiologische Atmung, die anderen sollen den Einfluss gesteigerter Frequenz und Amplitude demonstrieren. Ergebnisse: Zwischen der Gruppe S40 - 13 und statischen Kulturen bestanden keine Unterschiede. LDH-Freisetzung und frühapoptotische Zellen waren in den Gruppen S60 - 13 und S40 - 30 im Vergleich zu statischen Kulturen nach 24 h signifikant erhöht (LDH: 0,089 ± 0,014 µg/ml und 0,177 ± 0,050 µg/ml gegenüber 0,050 ± 0,011 µg/ml; frühapoptotische Zellen: 17 ± 3,5 % und 23 ± 3,1 % gegenüber 9,7 ± 1,4 %). Nekrotische Zellen fanden sich nur in der Gruppe S40 - 30 signifikant erhöht (13 ± 2,4 % gegenüber 6,1 ± 0,9 % in statischer Kultur nach 24 h). Captopril und L-Arginin reduzierten das Ausmaß der Apoptose in der Gruppe S40 - 30 nahezu auf das Niveau statischer Kulturen, ohne das Ausmaß an Nekrose und LDH-Freisetzung zu beeinflussen. Schlussfolgerungen: Durch Auslösung von Apoptose und Nekrose an ATII-Zellen kann verstärkte mechanische Dehnung zu akuter Lungenschädigung beitragen. Durch Dehnung mit hoher Amplitude ausgelöste Apoptose kann durch Captopril and L-Arginin verhindert werden.
Abstract
Background: Alveolar type-II(ATII)-cells are exposed to mechanical stretch during breathing and mechanical ventilation. Increased stretch may contribute to lung injury. Methods: The influence of three stretching patterns (characterized by frequency [min- 1] - increase in surface area [%]: S40 - 13, S60 - 13, S40 - 30) on parameters of apoptosis, necrosis and membrane integrity in rat ATII cells was compared with that in static cultures. The S40 - 13 stretching pattern simulated normal breathing. The other patterns were chosen to study increased amplitude and frequency. Results: There were no significant differences between the S40 - 13 group and static cultures. LDH release and early apoptotic cells were significantly increased in S60 - 13 and S40 - 30 in comparison with static cultures (LDH: 0.089 ± 0.014 µg/ml and 0.177 ± 0.050 µg/ml versus 0.050 ± 0.011 µg/ml; early apoptosis: 17 ± 3.5 % and 23 ± 3.1 % versus 9.7 ± 1.4 %) at 24 h. Necrosis was significantly increased only in the S40 - 30 group (13 ± 2.4 % versus 6.1 ± 0.9 % in static culture at 24 h). Captopril as well as L-Arginine prevented apoptosis and reduced apoptotic cells to static culture levels in the S40 - 30 group but did not influence necrosis and LDH release. Conclusion: Increased mechanical stretch may contribute to lung injury by induction of apoptosis and necrosis in ATII cells. Apoptosis induced by high amplitude mechanical stretch is prevented by captopril and L-Arginine.
Literatur
- 1 Wirtz H R, Dobbs L G. Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science. 1990; 250 1266-1269
- 2 Wirtz H R, Dobbs L G. The effects of mechanical forces on lung functions. Respir Physiol. 2000; 119 1-17
- 3 Sanchez-Esteban J, Cicchiello L A, Wang Y. et al . Mechanical stretch promotes alveolar epithelial type II cell differentiation. J Appl Physiol. 2001; 91 589-595
- 4 Edwards Y S, Sutherland L M, Power J H. et al . Cyclic stretch induces both apoptosis and secretion in rat alveolar type II cells. FEBS Lett. 1999; 448 127-130
- 5 Vlahakis N E, Hubmayr R D. Invited review: plasma membrane stress failure in alveolar epithelial cells. J Appl Physiol. 2000; 89 2490-2496; discussion 2497
- 6 Tschumperlin D J, Margulies S S. Equibiaxial deformation-induced injury of alveolar epithelial cells in vitro. Am J Physiol. 1998; 275 L1173-1183
- 7 Tschumperlin D J, Oswari J, Margulies A S. Deformation-induced injury of alveolar epithelial cells. Effect of frequency, duration, and amplitude. Am J Respir Crit Care Med. 2000; 162 357-362
- 8 . Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000; 342 1301-1308
- 9 Amato M B, Barbas C S, Medeiros D M. et al . Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998; 338 347-354
- 10 Uhlig S. Ventilation-induced lung injury and mechanotransduction: stretching it too far?. Am J Physiol Lung Cell Mol Physiol. 2002; 282 L892-896
- 11 Uhlig U, Haitsma J J, Goldmann T. et al . Ventilation-induced activation of the mitogen-activated protein kinase pathway. Eur Respir J. 2002; 20 946-956
- 12 Schneider M, Hartung T. Induction of the chemokines IL-8 and MCP-1 in human whole blood by a cell-lysate of human fibroblast cells. Immunol Lett. 2001; 75 163-165
- 13 Bardales R H, Xie S S, Schaefer R F. et al . Apoptosis is a major pathway responsible for the resolution of type II pneumocytes in acute lung injury. Am J Pathol. 1996; 149 845-852
- 14 Hallman M, Spragg R, Harrell J H. et al . Evidence of lung surfactant abnormality in respiratory failure. Study of bronchoalveolar lavage phospholipids, surface activity, phospholipase activity, and plasma myoinositol. J Clin Invest. 1982; 70 673-683
- 15 Oswari J, Matthay M A, Margulies S S. Keratinocyte growth factor reduces alveolar epithelial susceptibility to in vitro mechanical deformation. Am J Physiol Lung Cell Mol Physiol. 2001; 281 L1068-1077
- 16 Edwards Y S, Sutherland L M, Murray A W. NO protects alveolar type II cells from stretch-induced apoptosis. A novel role for macrophages in the lung. Am J Physiol Lung Cell Mol Physiol. 2000; 279 L1236-1242
- 17 Dobbs L G, Gonzalez R, Williams M C. An improved method for isolating type II cells in high yield and purity. Am Rev Respir Dis. 1986; 134 141-145
- 18 Wirtz H R, Schmidt M. Acute influence of cigarette smoke on secretion of pulmonary surfactant in rat alveolar type II cells in culture. Eur Respir J. 1996; 9 24-32
- 19 Willner J, Vordermark D, Schmidt M. et al . Secretory activity and cell cycle alteration of alveolar type II cells in the early and late phase after irradiation. Int J Radiat Oncol Biol Phys. 2003; 55 617-625
- 20 Tschumperlin D J, Margulies S S. Alveolar epithelial surface area-volume relationship in isolated rat lungs. J Appl Physiol. 1999; 86 2026-2033
- 21 Okano H, Shiraki K, Inoue H. et al . Cellular FLICE/caspase-8-inhibitory protein as a principal regulator of cell death and survival in human hepatocellular carcinoma. Lab Invest. 2003; 83 1033-1043
- 22 Matute-Bello G, Winn R K, Jonas M. et al . Fas (CD95) induces alveolar epithelial cell apoptosis in vivo: implications for acute pulmonary inflammation. Am J Pathol. 2001; 158 153-161
- 23 Janssen Y M, Soultanakis R, Steece K. et al . Depletion of nitric oxide causes cell cycle alterations, apoptosis, and oxidative stress in pulmonary cells. Am J Physiol. 1998; 275 L1100-1109
- 24 Mital S, Barbone A, Addonizio L J. et al . Endogenous endothelium-derived nitric oxide inhibits myocardial caspase activity: implications for treatment of end-stage heart failure. J Heart Lung Transplant. 2002; 21 576-585
- 25 Guo F H, De Raeve H R, Rice T W. et al . Continuous nitric oxide synthesis by inducible nitric oxide synthase in normal human airway epithelium in vivo. Proc Natl Acad Sci U S A. 1995; 92 7809-7813
- 26 Bannenberg G L, Gustafsson L E. Stretch-induced stimulation of lower airway nitric oxide formation in the guinea-pig: inhibition by gadolinium chloride. Pharmacol Toxicol. 1997; 81 13-18
- 27 Hammerschmidt S, Schiller J, Kuhn H. et al . Influence of tidal volume on pulmonary NO-release, tissue lipid peroxidation and surfactant phospholipids. Biochim Biophys Acta. 2002; 1639 16-27
- 28 Gessner C, Hammerschmidt S, Kuhn H. et al . Exhaled breath condensate nitrite and its relation to tidal volume in acute lung injury. Chest. 2003; 124 1046-1052
- 29 Kelly D J, Cox A J, Tolcos M. et al . Attenuation of tubular apoptosis by blockade of the renin-angiotensin system in diabetic Ren-2 rats. Kidney Int. 2002; 61 31-39
- 30 Yu G, Liang X, Xie X. et al . Diverse effects of chronic treatment with losartan, fosinopril, and amlodipine on apoptosis, angiotensin II in the left ventricle of hypertensive rats. Int J Cardiol. 2001; 81 123-129; discussion 129 - 130
- 31 Nagashima H, Sakomura Y, Aoka Y. et al . Angiotensin II type 2 receptor mediates vascular smooth muscle cell apoptosis in cystic medial degeneration associated with Marfan's syndrome. Circulation. 2001; 104 I282-287
- 32 Uhal B D, Gidea C, Bargout R. et al . Captopril inhibits apoptosis in human lung epithelial cells: a potential antifibrotic mechanism. Am J Physiol. 1998; 275 L1013-1017
- 33 Kitakaze M, Node K, Takashima S. et al . Cellular mechanisms of cardioprotection afforded by inhibitors of angiotensin converting enzyme in ischemic hearts: role of bradykinin and nitric oxide. Hypertens Res. 2000; 23 253-259
Dr. Stefan Hammerschmidt
Medizinische Universitätsklinik I · Pneumologie · Universität Leipzig
Johannisallee 32
04103 Leipzig
Email: stefan.hammerschmidt@t-online.de