Zusammenfassung
Hintergrund: Alveoläre Typ-II(ATII)-Zellen sind bei Atmung und Beatmung zyklischen Dehnungen ausgesetzt. Verstärkte Dehnung kann zu akuter Lungenschädigung beitragen. Methode: Diese Arbeit untersucht an ATII-Zellen der Ratte den Effekt dreier Dehnungsmuster (definiert durch Frequenz [min- 1 ] - Oberflächenzunahme [%]: S40 - 13, S60 - 13, S40 - 30) auf Parameter von Apoptose, Nekrose und Zellmembranintegrität im Vergleich zu statischen Kontrollen. Das Dehnungsmuster S40 - 13 simuliert physiologische Atmung, die anderen sollen den Einfluss gesteigerter Frequenz und Amplitude demonstrieren. Ergebnisse: Zwischen der Gruppe S40 - 13 und statischen Kulturen bestanden keine Unterschiede. LDH-Freisetzung und frühapoptotische Zellen waren in den Gruppen S60 - 13 und S40 - 30 im Vergleich zu statischen Kulturen nach 24 h signifikant erhöht (LDH: 0,089 ± 0,014 µg/ml und 0,177 ± 0,050 µg/ml gegenüber 0,050 ± 0,011 µg/ml; frühapoptotische Zellen: 17 ± 3,5 % und 23 ± 3,1 % gegenüber 9,7 ± 1,4 %). Nekrotische Zellen fanden sich nur in der Gruppe S40 - 30 signifikant erhöht (13 ± 2,4 % gegenüber 6,1 ± 0,9 % in statischer Kultur nach 24 h). Captopril und L-Arginin reduzierten das Ausmaß der Apoptose in der Gruppe S40 - 30 nahezu auf das Niveau statischer Kulturen, ohne das Ausmaß an Nekrose und LDH-Freisetzung zu beeinflussen. Schlussfolgerungen: Durch Auslösung von Apoptose und Nekrose an ATII-Zellen kann verstärkte mechanische Dehnung zu akuter Lungenschädigung beitragen. Durch Dehnung mit hoher Amplitude ausgelöste Apoptose kann durch Captopril and L-Arginin verhindert werden.
Abstract
Background: Alveolar type-II(ATII)-cells are exposed to mechanical stretch during breathing and mechanical ventilation. Increased stretch may contribute to lung injury. Methods: The influence of three stretching patterns (characterized by frequency [min- 1 ] - increase in surface area [%]: S40 - 13, S60 - 13, S40 - 30) on parameters of apoptosis, necrosis and membrane integrity in rat ATII cells was compared with that in static cultures. The S40 - 13 stretching pattern simulated normal breathing. The other patterns were chosen to study increased amplitude and frequency. Results: There were no significant differences between the S40 - 13 group and static cultures. LDH release and early apoptotic cells were significantly increased in S60 - 13 and S40 - 30 in comparison with static cultures (LDH: 0.089 ± 0.014 µg/ml and 0.177 ± 0.050 µg/ml versus 0.050 ± 0.011 µg/ml; early apoptosis: 17 ± 3.5 % and 23 ± 3.1 % versus 9.7 ± 1.4 %) at 24 h. Necrosis was significantly increased only in the S40 - 30 group (13 ± 2.4 % versus 6.1 ± 0.9 % in static culture at 24 h). Captopril as well as L-Arginine prevented apoptosis and reduced apoptotic cells to static culture levels in the S40 - 30 group but did not influence necrosis and LDH release. Conclusion: Increased mechanical stretch may contribute to lung injury by induction of apoptosis and necrosis in ATII cells. Apoptosis induced by high amplitude mechanical stretch is prevented by captopril and L-Arginine.
Literatur
1
Wirtz H R, Dobbs L G.
Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells.
Science.
1990;
250
1266-1269
2
Wirtz H R, Dobbs L G.
The effects of mechanical forces on lung functions.
Respir Physiol.
2000;
119
1-17
3
Sanchez-Esteban J, Cicchiello L A, Wang Y. et al .
Mechanical stretch promotes alveolar epithelial type II cell differentiation.
J Appl Physiol.
2001;
91
589-595
4
Edwards Y S, Sutherland L M, Power J H. et al .
Cyclic stretch induces both apoptosis and secretion in rat alveolar type II cells.
FEBS Lett.
1999;
448
127-130
5
Vlahakis N E, Hubmayr R D.
Invited review: plasma membrane stress failure in alveolar epithelial cells.
J Appl Physiol.
2000;
89
2490-2496; discussion 2497
6
Tschumperlin D J, Margulies S S.
Equibiaxial deformation-induced injury of alveolar epithelial cells in vitro.
Am J Physiol.
1998;
275
L1173-1183
7
Tschumperlin D J, Oswari J, Margulies A S.
Deformation-induced injury of alveolar epithelial cells. Effect of frequency, duration, and amplitude.
Am J Respir Crit Care Med.
2000;
162
357-362
8
.
Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network.
N Engl J Med.
2000;
342
1301-1308
9
Amato M B, Barbas C S, Medeiros D M. et al .
Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome.
N Engl J Med.
1998;
338
347-354
10
Uhlig S.
Ventilation-induced lung injury and mechanotransduction: stretching it too far?.
Am J Physiol Lung Cell Mol Physiol.
2002;
282
L892-896
11
Uhlig U, Haitsma J J, Goldmann T. et al .
Ventilation-induced activation of the mitogen-activated protein kinase pathway.
Eur Respir J.
2002;
20
946-956
12
Schneider M, Hartung T.
Induction of the chemokines IL-8 and MCP-1 in human whole blood by a cell-lysate of human fibroblast cells.
Immunol Lett.
2001;
75
163-165
13
Bardales R H, Xie S S, Schaefer R F. et al .
Apoptosis is a major pathway responsible for the resolution of type II pneumocytes in acute lung injury.
Am J Pathol.
1996;
149
845-852
14
Hallman M, Spragg R, Harrell J H. et al .
Evidence of lung surfactant abnormality in respiratory failure. Study of bronchoalveolar lavage phospholipids, surface activity, phospholipase activity, and plasma myoinositol.
J Clin Invest.
1982;
70
673-683
15
Oswari J, Matthay M A, Margulies S S.
Keratinocyte growth factor reduces alveolar epithelial susceptibility to in vitro mechanical deformation.
Am J Physiol Lung Cell Mol Physiol.
2001;
281
L1068-1077
16
Edwards Y S, Sutherland L M, Murray A W.
NO protects alveolar type II cells from stretch-induced apoptosis. A novel role for macrophages in the lung.
Am J Physiol Lung Cell Mol Physiol.
2000;
279
L1236-1242
17
Dobbs L G, Gonzalez R, Williams M C.
An improved method for isolating type II cells in high yield and purity.
Am Rev Respir Dis.
1986;
134
141-145
18
Wirtz H R, Schmidt M.
Acute influence of cigarette smoke on secretion of pulmonary surfactant in rat alveolar type II cells in culture.
Eur Respir J.
1996;
9
24-32
19
Willner J, Vordermark D, Schmidt M. et al .
Secretory activity and cell cycle alteration of alveolar type II cells in the early and late phase after irradiation.
Int J Radiat Oncol Biol Phys.
2003;
55
617-625
20
Tschumperlin D J, Margulies S S.
Alveolar epithelial surface area-volume relationship in isolated rat lungs.
J Appl Physiol.
1999;
86
2026-2033
21
Okano H, Shiraki K, Inoue H. et al .
Cellular FLICE/caspase-8-inhibitory protein as a principal regulator of cell death and survival in human hepatocellular carcinoma.
Lab Invest.
2003;
83
1033-1043
22
Matute-Bello G, Winn R K, Jonas M. et al .
Fas (CD95) induces alveolar epithelial cell apoptosis in vivo: implications for acute pulmonary inflammation.
Am J Pathol.
2001;
158
153-161
23
Janssen Y M, Soultanakis R, Steece K. et al .
Depletion of nitric oxide causes cell cycle alterations, apoptosis, and oxidative stress in pulmonary cells.
Am J Physiol.
1998;
275
L1100-1109
24
Mital S, Barbone A, Addonizio L J. et al .
Endogenous endothelium-derived nitric oxide inhibits myocardial caspase activity: implications for treatment of end-stage heart failure.
J Heart Lung Transplant.
2002;
21
576-585
25
Guo F H, De Raeve H R, Rice T W. et al .
Continuous nitric oxide synthesis by inducible nitric oxide synthase in normal human airway epithelium in vivo.
Proc Natl Acad Sci U S A.
1995;
92
7809-7813
26
Bannenberg G L, Gustafsson L E.
Stretch-induced stimulation of lower airway nitric oxide formation in the guinea-pig: inhibition by gadolinium chloride.
Pharmacol Toxicol.
1997;
81
13-18
27
Hammerschmidt S, Schiller J, Kuhn H. et al .
Influence of tidal volume on pulmonary NO-release, tissue lipid peroxidation and surfactant phospholipids.
Biochim Biophys Acta.
2002;
1639
16-27
28
Gessner C, Hammerschmidt S, Kuhn H. et al .
Exhaled breath condensate nitrite and its relation to tidal volume in acute lung injury.
Chest.
2003;
124
1046-1052
29
Kelly D J, Cox A J, Tolcos M. et al .
Attenuation of tubular apoptosis by blockade of the renin-angiotensin system in diabetic Ren-2 rats.
Kidney Int.
2002;
61
31-39
30
Yu G, Liang X, Xie X. et al .
Diverse effects of chronic treatment with losartan, fosinopril, and amlodipine on apoptosis, angiotensin II in the left ventricle of hypertensive rats.
Int J Cardiol.
2001;
81
123-129; discussion 129 - 130
31
Nagashima H, Sakomura Y, Aoka Y. et al .
Angiotensin II type 2 receptor mediates vascular smooth muscle cell apoptosis in cystic medial degeneration associated with Marfan's syndrome.
Circulation.
2001;
104
I282-287
32
Uhal B D, Gidea C, Bargout R. et al .
Captopril inhibits apoptosis in human lung epithelial cells: a potential antifibrotic mechanism.
Am J Physiol.
1998;
275
L1013-1017
33
Kitakaze M, Node K, Takashima S. et al .
Cellular mechanisms of cardioprotection afforded by inhibitors of angiotensin converting enzyme in ischemic hearts: role of bradykinin and nitric oxide.
Hypertens Res.
2000;
23
253-259
Dr. Stefan Hammerschmidt
Medizinische Universitätsklinik I · Pneumologie · Universität Leipzig
Johannisallee 32
04103 Leipzig
Email: stefan.hammerschmidt@t-online.de