Pneumologie 2004; 58(6): 395-399
DOI: 10.1055/s-2004-818506
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Transkriptionelle Aktivität der Surfactant-Apoproteine A1 und A2 in nicht kleinzelligen Bronchialkarzinomen und tumorfreien Lungengeweben

Transcriptional Activity of Surfactant-Apoproteins A1 and A2 in Non Small Cell Lung Carcinomas and Tumor-Free Lung TissuesM.  Stoffers1 , T.  Goldmann1 , D.  Branscheid2 , J.  Galle1 , E.  Vollmer1
  • 1Forschungszentrum Borstel, Klinische und Experimentelle Pathologie (Prof. Dr. med. Dr. med. vet. Ekkehard Vollmer)
  • 2Krankenhaus Großhansdorf, Abteilung für Thoraxchirurgie (PD Dr. med. Detlev Branscheid)
Herrn Prof. Dr. med. Helgo Magnussen zum 60. Geburtstag.
Further Information

Publication History

Eingang: 19. März 2004

Nach Revision akzeptiert: 12. Mai 2004

Publication Date:
24 June 2004 (online)

Zusammenfassung

In dieser Arbeit wurde das transkriptionelle Verhältnis der Surfactant-Apoproteine A1 und A2 (SP-A1 & SP-A2) im Tumor und in tumorfreien Lungengeweben von Patienten mit nicht kleinzelligen Bronchialkarzinomen untersucht. Material und Methoden: Unfixierte schockgefrorene Proben aus Lungenresektionspräparaten von 21 Patienten mit Adenokarzinomen der Lunge und 6 Patienten mit Plattenepithelkarzinomen (Kontrollgruppe) wurden untersucht. Hierzu wurde RT-PCR unter Nutzung eines SP-A1/SP-A2-Konsensusfragmentes gefolgt von enzymatischen Restriktionsanalysen durchgeführt. Ergebnisse: Tumorhaltige Gewebe der Adenokarzinome zeigten höhere SP-A1/SP-A2-Verhältnisse als tumorfreie Gewebe. Die Unterschiede der Expression von SP-A1/SP-A2 in den intraindividuellen tumorhaltigen und tumorfreien Geweben der untersuchten Adenokarzinome ist statistisch signifikant (p = 0,05). Plattenepithelkarzinome zeigten dieses nicht. Schlussfolgerung: Eine neue Methode zur Untersuchung der transkriptionellen Aktivität der Surfactant-Apoproteine A1 und A2 in schockgefrorenen Lungengeweben wurde etabliert. Es wurde gezeigt, dass Adenokarzinomgewebe höhere SP-A1/SP-A2-Verhältnisse aufweisen als entsprechende tumorfreie Gewebe und dass die Variationsbreite der SP-A-mRNA-Expression in den Fällen höheren Tumorgradings zunimmt.

Abstract

Objective of this study was to investigate the balance of surfactant-apoprotein A1 and A2 (SP-A1 & SP-A2) at transcriptional level in tumor and tumor-free lung-tissues of patients with non-small-cell lung-carcinomas. Materials and Methods: Nonfixed snap-frozen tumor and tumor-free sections of lungs, excised from 21 patients with adenocarcinomas of the lung and 6 patients with squamous cell carcinomas (control group) were analyzed. This was accomplished by RT-PCR using a SP-A1/SP-A2 consensus sequence, followed by enzymatic restriction. Results: Tumor-containing tissues of adenocarcinomas showed higher SP-A1/SP-A2 ratios than the tumor free tissues. There was a significant difference in expression of SP-A1/SP-A2-mRNA in intra-individual tumor and tumor-free lung-tissues of adenocarcinoma patients (p = 0,05). In cases of squamous cell carcinomas this was not observed. Conclusions: A novel method to investigate the transcriptional activity of surfactant-apoproteins A1 and A2 in snap-frozen lung tissues was established. It was shown, that adenocarcinoma-tissues display higher SP-A1/SP-A2 than the corresponding tumor-free tissues and that the variation of SP-A-mRNA expression rises in cases of higher tumor-grading.

Literatur

  • 1 Askin F B, Kuhn C. The cellular origin of pulmonary surfactant.  Lab Invest. 1971;  25 260-268
  • 2 Pattle R E. Properties, funktion and origin of the alveolar lining layer.  Nature. 1955;  175 1125-1126
  • 3 Fisher J H, Kao F T, Jones C. et al . The coding sequence for the 32.000-Dalton pulmonary surfactant-associated protein A is lokated on chromosome 10 and identifies two seperate restriktion-fragment-length polymorphisms.  Am J Hum Genet. 1987;  40 (6) 503-511
  • 4 Floros J, Hoover R R. Genetics of the hydrophilic surfactant proteins A and D.  Biochim Biophys Acta. 1998;  1408 312-322
  • 5 Hoover R R, Floros J. Organization of the human SP-A and SP-D loci at 10q22-q23. Physical and radiation hybrid mapping reveal gene order and orientation.  Am J Respir Cell Mol Biol. 1998;  18 353-362
  • 6 Katyal S L, Singh G, Locker J. Characterization of a second human pulmonary surfactant-associated protein SP-A gene.  Am J Respir Cell Mol Biol. 1992;  6 446-452
  • 7 McCormick S M, Boggaram V, Mendelson C R. Characterization of mRNA transcripts and organisation of human SP-A1 and SP-A2 genes.  Am J Physiol. 1994;  266 L354-L366
  • 8 Arias-Diaz J, Vara E, Garcia C. et al . Tumor necrosis factor-α inhibits synthesis of surfactant by isolated human type II pneumocytes.  Eur J Surg. 1993;  159 541-549
  • 9 George T N, Snyder J M. Regulation of surfactant protein gene expression by retinoic acid metabolites.  Pediatr Res. 1997;  41 (5) 692-701
  • 10 Hoover R R, Thomas K H, Floros J. Glucocorticoid inhibition of human SP-A1 promoter activity in NCI-H441 cells.  Biochem J. 1999;  340 69-76
  • 11 Kumar A R, Snyder J M. Differential regulation of SP-A1 and SP-A2 genes by cAMP, glukocorticoids, and insulin.  Am J Physiol. 1998;  274 L177-L185
  • 12 Mendelson R, Boggaram V. Hormonal and developmental regulation of pulmonary surfactant synthesis in fetal lung.  Ballieres Clin Endocrinol Metab. 1990;  8 241-266
  • 13 McCormick S M, Mendelson C R. Human SP-A1 and SP-A2 genes are differently regulated during development and by cAMP and glukocorticoids.  Am J Physiol. 1994;  266 L367-L374
  • 14 Miakotina O L, Dekowski S A, Snyder J M. Insulin inhibits surfactantprotein A and B gene expression in the H441 cell line.  Biochem et Biophys Acta. 1998;  1442 60-70
  • 15 Hamm H, Luhrs J, Guzman y Rotaeche J. et al . Elevated surfactant protein A in bronchoalveolar lavage fluids from sarcoidosis and hypersensitivity pneumonitis patients.  Chest. 1994;  106 (6) 1766-1770
  • 16 Jobe A H, Ikegami M. Surfactant and acute lung injury.  Proceedings of the Association of American Physicians. 1998;  110 (6) 489-495
  • 17 Johansson J, Curstedt T. Molecular structures and interactions of pulmonary surfactant components.  Eur J Biochem. 1997;  244 675-693
  • 18 Kuroki Y, Takahashi H, Chiba H. et al . Surfactant proteins A and D: disease markers.  Biochem et Biophys Acta. 1998;  1408 334-345
  • 19 Mason R J, Greene K, Voelker D R. Surfactant protein A and surfactantprotein D in health and disease.  Am J Pysiol. 1998;  19 L1-L13
  • 20 McCormack F X, King Jr T E, Bucher B L. et al . Surfactant protein A predicts survival in idiopathic pulmonary fibrosis.  Am J Respir Crit Care Med. 1995;  152 (2) 751-759
  • 21 Graaf E A van de, Jansen H M, Lutter R. et al . Surfactant protein A in bronchoalveolar lavage fluid.  J Lab Clin Med. 1992;  120 (2) 252-263
  • 22 Bhattacharjee A, Richards W G, Staunton J. et al . Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses.  PNAS. 2001;  98 (24) 13 790-13 795
  • 23 Broers J L, Jensen S M, Travis W D. et al . Expression of surfactant associated protein-A and clara cell 10 kilodalton mRNA in neoplastic and non-neoplastic human lung tissue as detected by in situ-Hybridization.  Lab Invest. 1992;  66 (3) 337-346
  • 24 Honda Y, Kuroki Y, Shijubo N. et al . Aberrant appearance of lung surfactant protein A in sera of patients with idiopathic pulmonary fibrosis and its clinical significance.  Respiration. 1995;  62 (2) 64-69
  • 25 Karinch A M, deMello D E, Floros J. Effekt of genotype on the levels of surfactant protein A mRNA and on the SPA2 splice variants in adult humans.  Biochem J. 1997;  321 39-47
  • 26 Floros J, Karinch A M. Human SP-A: then and now.  Am J Physiol. 1995;  268 L162-L165
  • 27 Goldmann T, Becher B, Wiedorn K H. et al . Epipodite and fat cells as sites of hemoglobin synthesis in the brachiopod crustcean Daphnia magna.  Histochem Cell Biol. 1999;  112 335-339
  • 28 Quiagen GmbH .RNeasy Mini Handbook. 2nd Edition. 1999
  • 29 Clauß G, Ebner H. Grundlagen der Statistik für Psychologen, Pädagogen und Soziologen. Kap. 2 und Kap. 4. Frankfurt a. M.: Verlag Harri Deutsch 1972
  • 30 Betz C, Papadopoulos T, Buchwald J. et al . Surfactant protein gene expression in metastatic and micrometastatic pulmonary adenocarcinomas and other non-small cell lung carcinomas: detection by reverse transcriptase-polymerase chain reaction.  Cancer Res. 1995;  55 4283-4286
  • 31 Kitamura H, Kameda Y, Ito T. et al . Cytodifferentiation of atypical adenomatous hyperplasia and bronchoalveolar lung carcinoma: immunhistochemical and ultrastructural studies.  Virchows Arch. 1997;  431 415-424
  • 32 Mori M, Tezuka F, Chiba R. et al . Atypical adenomatous hyperplasia and adenocarcinoma of the human lung.  Cancer. 1996;  77 (4) 665-674
  • 33 McCormick C, Freschney R. Activity of growth factors in the IL-6 group in the differentiation of human lung adenocarcinoma.  Br J Cancer. 2000;  82 (4) 881-890

Dr. rer. nat. Torsten Goldmann

Forschungszentrum Borstel · Klinische und Experimentelle Pathologie

Parkallee 3a

23845 Borstel

Email: tgoldmann@fz-borstel.de