Zusammenfassung
In dieser Arbeit wurde das transkriptionelle Verhältnis der Surfactant-Apoproteine A1 und A2 (SP-A1 & SP-A2) im Tumor und in tumorfreien Lungengeweben von Patienten mit nicht kleinzelligen Bronchialkarzinomen untersucht. Material und Methoden: Unfixierte schockgefrorene Proben aus Lungenresektionspräparaten von 21 Patienten mit Adenokarzinomen der Lunge und 6 Patienten mit Plattenepithelkarzinomen (Kontrollgruppe) wurden untersucht. Hierzu wurde RT-PCR unter Nutzung eines SP-A1/SP-A2-Konsensusfragmentes gefolgt von enzymatischen Restriktionsanalysen durchgeführt. Ergebnisse: Tumorhaltige Gewebe der Adenokarzinome zeigten höhere SP-A1/SP-A2-Verhältnisse als tumorfreie Gewebe. Die Unterschiede der Expression von SP-A1/SP-A2 in den intraindividuellen tumorhaltigen und tumorfreien Geweben der untersuchten Adenokarzinome ist statistisch signifikant (p = 0,05). Plattenepithelkarzinome zeigten dieses nicht. Schlussfolgerung: Eine neue Methode zur Untersuchung der transkriptionellen Aktivität der Surfactant-Apoproteine A1 und A2 in schockgefrorenen Lungengeweben wurde etabliert. Es wurde gezeigt, dass Adenokarzinomgewebe höhere SP-A1/SP-A2-Verhältnisse aufweisen als entsprechende tumorfreie Gewebe und dass die Variationsbreite der SP-A-mRNA-Expression in den Fällen höheren Tumorgradings zunimmt.
Abstract
Objective of this study was to investigate the balance of surfactant-apoprotein A1 and A2 (SP-A1 & SP-A2) at transcriptional level in tumor and tumor-free lung-tissues of patients with non-small-cell lung-carcinomas. Materials and Methods: Nonfixed snap-frozen tumor and tumor-free sections of lungs, excised from 21 patients with adenocarcinomas of the lung and 6 patients with squamous cell carcinomas (control group) were analyzed. This was accomplished by RT-PCR using a SP-A1/SP-A2 consensus sequence, followed by enzymatic restriction. Results: Tumor-containing tissues of adenocarcinomas showed higher SP-A1/SP-A2 ratios than the tumor free tissues. There was a significant difference in expression of SP-A1/SP-A2-mRNA in intra-individual tumor and tumor-free lung-tissues of adenocarcinoma patients (p = 0,05). In cases of squamous cell carcinomas this was not observed. Conclusions: A novel method to investigate the transcriptional activity of surfactant-apoproteins A1 and A2 in snap-frozen lung tissues was established. It was shown, that adenocarcinoma-tissues display higher SP-A1/SP-A2 than the corresponding tumor-free tissues and that the variation of SP-A-mRNA expression rises in cases of higher tumor-grading.
Literatur
1
Askin F B, Kuhn C.
The cellular origin of pulmonary surfactant.
Lab Invest.
1971;
25
260-268
2
Pattle R E.
Properties, funktion and origin of the alveolar lining layer.
Nature.
1955;
175
1125-1126
3
Fisher J H, Kao F T, Jones C. et al .
The coding sequence for the 32.000-Dalton pulmonary surfactant-associated protein A is lokated on chromosome 10 and identifies two seperate restriktion-fragment-length polymorphisms.
Am J Hum Genet.
1987;
40 (6)
503-511
4
Floros J, Hoover R R.
Genetics of the hydrophilic surfactant proteins A and D.
Biochim Biophys Acta.
1998;
1408
312-322
5
Hoover R R, Floros J.
Organization of the human SP-A and SP-D loci at 10q22-q23. Physical and radiation hybrid mapping reveal gene order and orientation.
Am J Respir Cell Mol Biol.
1998;
18
353-362
6
Katyal S L, Singh G, Locker J.
Characterization of a second human pulmonary surfactant-associated protein SP-A gene.
Am J Respir Cell Mol Biol.
1992;
6
446-452
7
McCormick S M, Boggaram V, Mendelson C R.
Characterization of mRNA transcripts and organisation of human SP-A1 and SP-A2 genes.
Am J Physiol.
1994;
266
L354-L366
8
Arias-Diaz J, Vara E, Garcia C. et al .
Tumor necrosis factor-α inhibits synthesis of surfactant by isolated human type II pneumocytes.
Eur J Surg.
1993;
159
541-549
9
George T N, Snyder J M.
Regulation of surfactant protein gene expression by retinoic acid metabolites.
Pediatr Res.
1997;
41 (5)
692-701
10
Hoover R R, Thomas K H, Floros J.
Glucocorticoid inhibition of human SP-A1 promoter activity in NCI-H441 cells.
Biochem J.
1999;
340
69-76
11
Kumar A R, Snyder J M.
Differential regulation of SP-A1 and SP-A2 genes by cAMP, glukocorticoids, and insulin.
Am J Physiol.
1998;
274
L177-L185
12
Mendelson R, Boggaram V.
Hormonal and developmental regulation of pulmonary surfactant synthesis in fetal lung.
Ballieres Clin Endocrinol Metab.
1990;
8
241-266
13
McCormick S M, Mendelson C R.
Human SP-A1 and SP-A2 genes are differently regulated during development and by cAMP and glukocorticoids.
Am J Physiol.
1994;
266
L367-L374
14
Miakotina O L, Dekowski S A, Snyder J M.
Insulin inhibits surfactantprotein A and B gene expression in the H441 cell line.
Biochem et Biophys Acta.
1998;
1442
60-70
15
Hamm H, Luhrs J, Guzman y Rotaeche J. et al .
Elevated surfactant protein A in bronchoalveolar lavage fluids from sarcoidosis and hypersensitivity pneumonitis patients.
Chest.
1994;
106 (6)
1766-1770
16
Jobe A H, Ikegami M.
Surfactant and acute lung injury.
Proceedings of the Association of American Physicians.
1998;
110 (6)
489-495
17
Johansson J, Curstedt T.
Molecular structures and interactions of pulmonary surfactant components.
Eur J Biochem.
1997;
244
675-693
18
Kuroki Y, Takahashi H, Chiba H. et al .
Surfactant proteins A and D: disease markers.
Biochem et Biophys Acta.
1998;
1408
334-345
19
Mason R J, Greene K, Voelker D R.
Surfactant protein A and surfactantprotein D in health and disease.
Am J Pysiol.
1998;
19
L1-L13
20
McCormack F X, King Jr T E, Bucher B L. et al .
Surfactant protein A predicts survival in idiopathic pulmonary fibrosis.
Am J Respir Crit Care Med.
1995;
152 (2)
751-759
21
Graaf E A van de, Jansen H M, Lutter R. et al .
Surfactant protein A in bronchoalveolar lavage fluid.
J Lab Clin Med.
1992;
120 (2)
252-263
22
Bhattacharjee A, Richards W G, Staunton J. et al .
Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses.
PNAS.
2001;
98 (24)
13 790-13 795
23
Broers J L, Jensen S M, Travis W D. et al .
Expression of surfactant associated protein-A and clara cell 10 kilodalton mRNA in neoplastic and non-neoplastic human lung tissue as detected by in situ-Hybridization.
Lab Invest.
1992;
66 (3)
337-346
24
Honda Y, Kuroki Y, Shijubo N. et al .
Aberrant appearance of lung surfactant protein A in sera of patients with idiopathic pulmonary fibrosis and its clinical significance.
Respiration.
1995;
62 (2)
64-69
25
Karinch A M, deMello D E, Floros J.
Effekt of genotype on the levels of surfactant protein A mRNA and on the SPA2 splice variants in adult humans.
Biochem J.
1997;
321
39-47
26
Floros J, Karinch A M.
Human SP-A: then and now.
Am J Physiol.
1995;
268
L162-L165
27
Goldmann T, Becher B, Wiedorn K H. et al .
Epipodite and fat cells as sites of hemoglobin synthesis in the brachiopod crustcean Daphnia magna.
Histochem Cell Biol.
1999;
112
335-339
28 Quiagen GmbH .RNeasy Mini Handbook. 2nd Edition. 1999
29 Clauß G, Ebner H. Grundlagen der Statistik für Psychologen, Pädagogen und Soziologen. Kap. 2 und Kap. 4. Frankfurt a. M.: Verlag Harri Deutsch 1972
30
Betz C, Papadopoulos T, Buchwald J. et al .
Surfactant protein gene expression in metastatic and micrometastatic pulmonary adenocarcinomas and other non-small cell lung carcinomas: detection by reverse transcriptase-polymerase chain reaction.
Cancer Res.
1995;
55
4283-4286
31
Kitamura H, Kameda Y, Ito T. et al .
Cytodifferentiation of atypical adenomatous hyperplasia and bronchoalveolar lung carcinoma: immunhistochemical and ultrastructural studies.
Virchows Arch.
1997;
431
415-424
32
Mori M, Tezuka F, Chiba R. et al .
Atypical adenomatous hyperplasia and adenocarcinoma of the human lung.
Cancer.
1996;
77 (4)
665-674
33
McCormick C, Freschney R.
Activity of growth factors in the IL-6 group in the differentiation of human lung adenocarcinoma.
Br J Cancer.
2000;
82 (4)
881-890
Dr. rer. nat. Torsten Goldmann
Forschungszentrum Borstel · Klinische und Experimentelle Pathologie
Parkallee 3a
23845 Borstel
Email: tgoldmann@fz-borstel.de