Planta Med 2004; 70(4): 321-327
DOI: 10.1055/s-2004-818943
Original Paper
Pharmacology
© Georg Thieme Verlag Stuttgart · New York

Acanthoic Acid from Acanthopanax koreanum Protects against Liver Injury induced by tert-Butyl Hydroperoxide or Carbon Tetrachloride in vitro and in vivo

Eun-Jeon Park1 , Yu-Zhe Zhao1 , Young Ho Kim2 , Jung Joon Lee3 , Dong Hwan Sohn1
  • 1Department of Pharmacy, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
  • 2College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
  • 3Anticancer Research Laboratory, Korea Research Institute of Bioscience and Biotechnology, Yuseong, Daejeon, Republic of Korea
This work was supported by the grant (PF002113-01) from the Plant Diversity Research Center of 21st Century Frontier Research Program funded by the Ministry of Science and Technology of the Korean Government
Weitere Informationen

Publikationsverlauf

Received: October 20, 2003

Accepted: January 10, 2004

Publikationsdatum:
19. April 2004 (online)

Preview

Abstract

The aim of this study was to investigate the protective effect of acanthoic acid, a diterpene isolated from the root bark of Acanthopanax koreanum, on liver injury induced by either tert-butyl hydroperoxide (tBH) or carbon tetrachloride in vitro and in vivo. In vitro, the cellular leakage of lactate dehydrogenase (LDH) following treatment with 1.5 mM tBH for 1 h, was significantly inhibited by co-treatment with acanthoic acid (25 and 5 μg/mL) and the ED50 of acanthoic acid was 2.58 μg/mL (8.5 μM). The cellular leakage of LDH following one hour of treatment with 2.5 mM CCl4 was significantly inhibited by co-treatment with acanthoic acid (25 μg/mL) and the ED50 of acanthoic acid was 4.25 μg/mL (14.1 μM). Co-treatment with acanthoic acid significantly inhibited the generation of intracellular reactive oxygen species (ROS) and intracellular glutathione (GSH) depletion induced by tBH or CCl4. Acanthoic acid pretreatment (100 mg/kg per day for four consecutive days, p. o.) significantly reduced levels of aspartate transaminase and alanine transaminase in acute liver injury models induced by either tBH or carbon tetrachloride. Treatment with acanthoic acid (100 mg/kg, p. o.) at 6, 24, and 48 hours after carbon tetrachloride subcutaneous injection significantly reduced the levels of aspartate transaminase and alanine transaminase in serum. Histological observations revealed that fatty acid changes, hepatocyte necrosis and inflammatory cell infiltration in CCl4-injured liver were improved upon treatment with acanthoic acid. In vivo treatment with acanthoic acid was not able to modify CYP2E1 activity and protein expression in liver microsomes at the dose used, showing that the hepatoprotective effect of acanthoic acid was not mediated through inhibition of CCl4 bioactivation. From the results above, acanthoic acid had a protective effect against tBH- or CCl4-induced hepatotoxicity in vitro and in vivo.

Abbreviations

tBH:Tertiary-butyl hydroperoxide

AST:aspartate transaminase

ALT:alanine transaminase

DMSO:dimethyl sulfoxide

GSH:glutathione (reduced form)

DCF:2′,7′-dichlorofluorescein

ROS:reactive oxygen species

References

Prof. Dong Hwan Sohn

Department of Pharmacy

Wonkwang University

Iksan

Jeonbuk 570-749

Republic of Korea

Fax: +82-63-854-6038

eMail: dhsohn@wonkwang.ac.kr